12.2015年9月3日,抗戰(zhàn)勝利70周年紀(jì)念活動(dòng)在北京隆重舉行,收到全國(guó)人民的矚目.紀(jì)念活動(dòng)包括舉行紀(jì)念大會(huì)、閱兵式、招待會(huì)和文藝晚會(huì)等,據(jù)統(tǒng)計(jì),抗戰(zhàn)老兵由于身體原因,參加紀(jì)念大會(huì)、閱兵式、招待會(huì)這三個(gè)環(huán)節(jié)(可參加多個(gè),也可都不參加)的情況及其概率如表所示:
參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(1)若m=2n,則從這60名抗戰(zhàn)老兵中按照參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)分層抽取6人進(jìn)行座談,求參加紀(jì)念活動(dòng)環(huán)節(jié)數(shù)為1的抗戰(zhàn)老兵中抽取的人數(shù);
(2)某醫(yī)療部門決定從(1)中抽取的6名抗戰(zhàn)老兵中隨機(jī)抽取2名進(jìn)行體檢,求這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3的概率.

分析 (1)由題意可知:$m+n+\frac{1}{6}+\frac{1}{3}=1$,再由m=2n,能求出這60名抗戰(zhàn)老兵中參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為0,1,2,3的抗戰(zhàn)老兵的人數(shù)分別為10,20,10,20,由此利用分層抽樣法能求出參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為1的抗戰(zhàn)老兵中應(yīng)抽取的人數(shù).
(2)抽取的這6名抗戰(zhàn)老兵中1名參加了0個(gè)環(huán)節(jié),記為A,2名參加了1個(gè)環(huán)節(jié),記為B,C,1名參加了2個(gè)環(huán)節(jié),分別記為D,2名參加了3個(gè)環(huán)節(jié),分別記為E,F(xiàn),從這6名抗戰(zhàn)老兵中隨機(jī)抽取2人,利用列舉法能求出這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3的概率.

解答 解:(1)由題意可知:$m+n+\frac{1}{6}+\frac{1}{3}=1$,
又m=2n,解得$m=\frac{1}{3}$,$n=\frac{1}{6}$
故這60名抗戰(zhàn)老兵中參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為0,1,2,3的抗戰(zhàn)老兵的人數(shù)分別為10,20,10,20,
其中參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為1的抗戰(zhàn)老兵中應(yīng)抽取的人數(shù)為$20×\frac{6}{60}=2$.
(2)由(1)可知抽取的這6名抗戰(zhàn)老兵中1名參加了0個(gè)環(huán)節(jié),記為A,
2名參加了1個(gè)環(huán)節(jié),記為B,C,1名參加了2個(gè)環(huán)節(jié),分別記為D,
2名參加了3個(gè)環(huán)節(jié),分別記為E,F(xiàn),
從這6名抗戰(zhàn)老兵中隨機(jī)抽取2人,有:
(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),
(B,E),(B,F(xiàn)),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn)),
共15個(gè)基本事件,
記“這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3”位事件M,
則事件M包含的基本事件為:
(A,E),(A,F(xiàn)),(B,E),(B,F(xiàn)),(C,E),(C,F(xiàn)),
(D,E),(D,F(xiàn)),(E,F(xiàn)),共9個(gè)基本事件.
所以這2名抗戰(zhàn)老兵中至少有1人參加紀(jì)念活動(dòng)的環(huán)節(jié)數(shù)為3的概率$P(M)=\frac{9}{15}=\frac{3}{5}$.

點(diǎn)評(píng) 本題分層抽樣的應(yīng)用,考查概率的求法,考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xex-$\frac{1}{2}$a(x+1)2(其中a∈R,e為自然對(duì)數(shù)的底數(shù),e=2.718128…).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為4的正方形,兩條虛線互相垂直,則該幾何體的表面積是( 。
A.$96+16\sqrt{5}$B.$80+16\sqrt{5}$C.$80+32\sqrt{5}$D.$96+32\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)的定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”.若函數(shù)g(x)定義域?yàn)镽,恒大于0,且對(duì)任意x1,x2∈R,恒有l(wèi)g[f(x1+x2)]<lg[f(x1)]+lg[f(x2)],則稱g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否是“V形函數(shù)”并說明理由;
(2)當(dāng)時(shí)g(x)=5x+2判斷g(x)是否是“對(duì)數(shù)V形函數(shù)”,并說明理由;
(3)若函數(shù)f(x)是“V形函數(shù)”,且滿足對(duì)任意x∈R都有f(x)≥2,問f(x)是否是“對(duì)數(shù)V形函數(shù)”?請(qǐng)加以證明,如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右項(xiàng)點(diǎn)分別為A1,A2,左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{3}}{2}$,|F1F2|=2$\sqrt{3}$,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(diǎn)P(4,m)的直線PA1,PA2與橢圓分別交于點(diǎn)M,N,其中m>0,求△OMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等差數(shù)列{an}中,a3+a9=18-a6,Sn表示數(shù)列{an}的前n項(xiàng)和,則S11=( 。
A.66B.99C.198D.297

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1-i}{i}$(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.(1,1)B.(1,-1)C.(-1,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a,b,c分別是角A,B,C的對(duì)邊,若a=b=$\frac{\sqrt{3}}{3}$c,則角A=( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=2sinωx+1(ω>0)在區(qū)間[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),則ω的取值范圍是( 。
A.(0,$\frac{3}{4}$]B.(0,1]C.[$\frac{3}{4}$,1]D.[$\frac{3}{2}$,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案