12.已知A=(a,a+4),(a∈R),B=[2,5],若A∩B=B,則a的取值范圍是(1,2).

分析 由已知得B⊆A,由此能求出a的取值范圍.

解答 解:∵A=(a,a+4),(a∈R),B=[2,5],A∩B=B,
∴B⊆A,
∴$\left\{\begin{array}{l}{a<2}\\{a+4>5}\end{array}\right.$,解得1<a<2,
∴a的取值范圍是(1,2).
故答案為:(1,2).

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x+2)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。
A.f(-25)<f(10)<f(80)B.f(80)<f(10)<f(-25)C.f(10)<f(80)<f(-25)D.f(-25)<f(80)<f(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)集合A={x|kx2-4x+2=0},若集合A中只有一個(gè)元素,試求實(shí)數(shù)k的值,并用列舉法表示集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(1)用定義證明f(x)在[1,+∞)上是增函數(shù);
(2)求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合A={-1,0,1},B={z|z=x+y,x∈A,y∈A},則集合B的真子集的個(gè)數(shù)為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.直線(xiàn)過(guò)原點(diǎn)與曲線(xiàn)y=$\frac{1}{x+1}$相切于點(diǎn)P,那么P點(diǎn)的坐標(biāo)為(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在等差數(shù)列{an}中,$\frac{{a}_{1010}}{{a}_{1009}}$<-1,若它的前n項(xiàng)和Sn有最大值,則使Sn>0的最大正整數(shù)n的值為2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.$\overline{z}$是z的共軛復(fù)數(shù),z+$\overline{z}$=2,(z-$\overline{z}$)•i=2,則z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:|x-1|≥2,命題q:x∈Z;如果“p且q”與“非q”同時(shí)為假命題,則滿(mǎn)足條件的x為( 。
A.{x|x≥3} 或 {x|x≤-1,x∉Z}B.{x|-1≤x≤3,x∈Z}
C.{-1,0,1,2,3}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案