2.已知命題p:|x-1|≥2,命題q:x∈Z;如果“p且q”與“非q”同時(shí)為假命題,則滿足條件的x為( 。
A.{x|x≥3} 或 {x|x≤-1,x∉Z}B.{x|-1≤x≤3,x∈Z}
C.{-1,0,1,2,3}D.{0,1,2}

分析 由題設(shè)條件先求出命題P:x≥3或x≤-1,由“p且q”與“?q”同時(shí)為假命題知0<x<4,x∈Z.由此能得到滿足條件的x的集合.

解答 解:由命題p:|x-1|≥2,得到命題P:x-1≥2或x-1≤-2,即命題P:x≥3或x≤-1;
∵?q為假命題,∴命題q:x∈Z為真命題.
再由“p且q”為假命題,知命題P:x≥3或x≤-1是假命題.
故-1<x<3,x∈Z.
∴滿足條件的x的值為:{0,1,2}.
故選:D.

點(diǎn)評(píng) 本題考查命題的真假判斷和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的靈活運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知A=(a,a+4),(a∈R),B=[2,5],若A∩B=B,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a2=1,a7=a5+2a3,則a6=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知集合U={1,2,3,4,5,6,7,8,9},A={2,4,5,7},B={3,4,5,6,8},則(∁UA)∩B={3,6,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)是定義在R的偶函數(shù),若f(x)在(-∞,0)上單調(diào)遞增,則f(-1)>f(2)(填“>”“=”“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.統(tǒng)計(jì)5名職工的體重?cái)?shù)據(jù)的莖葉圖如圖所示,則該樣本的方差為62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)集合A={x|x2-5x-6<0},集合B={x|-3<x<2},則A∪B={x|-3<x<6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知平面α,β和直線m,給出條件:①m∥α;②m⊥α;③m?α;④α∥β,當(dāng)滿足條件②④時(shí),有m⊥β.(填所選條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中,周期為π,且在[$\frac{π}{4},\frac{π}{2}$]上為減函數(shù)的是(  )
A.y=sin(x+$\frac{π}{2}$)B.y=cos(x+$\frac{π}{2}$)C.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案