如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.

(I)見解析;(II).

解析試題分析:(I)因為動點,所以需證,即可證;(II)等體積法,由,即可求出三棱錐的體積.
試題解析:(I)因為為動點,所以需證,
因為是直棱柱,所以
,所以
又因為是等腰直角三角形,且的中點,所以

所以. ,
因為,
所以,
(證畢)
(Ⅱ).因為,所以,
中,
中,
因為是直棱柱
所以是三棱錐的高

所以,三棱錐的體積為
考點:1.直線與平面垂直的性質(zhì);2.棱錐的體積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD為正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點.

(I)求證:BC∥平面EFG;
(II)求證:DH平面AEG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正方體的棱長為,線段上有兩個動點,且,則下列結(jié)論中錯誤的是(     )

A.
B.三棱錐的體積為定值
C.二面角的大小為定值
D.異面直線所成角為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四面體中,、分別是、的中點,

(Ⅰ)求證:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求EC與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中,、分別是棱的中點,點在棱上,已知,,

(1)求證:平面
(2)設點在棱上,當為何值時,平面平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點.

(1)求證:AC⊥B1C;
(2)求證:AC1∥平面B1CD;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知如圖,平行四邊形中,,,正方形所在平面與平面垂直,分別是的中點。

⑴求證:平面;
⑵求平面與平面所成的二面角的正弦值。

查看答案和解析>>

同步練習冊答案