【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的外接球半徑為( )
A.2
B.
C.
D.2
【答案】C
【解析】
解:由三視圖知幾何體是三棱錐A﹣BCD,為棱長為4的正方體一部分,
直觀圖如圖所示:
由正方體的性質(zhì)可得,AB=AD=BD=4 ,
AC=BC= =2 ,CD= =6,
設三棱錐C﹣ABD的外接球球心是O,設半徑是R,
取AB的中點E,連接CE、DE,如圖所示:
設OA=OB=OC=OD=R,△ABD是等邊三角形,
∴O在底面△ABD的射影是△ABD中心F,
∵DE⊥BE,BE=2 ,∴DE= = ,
同理可得,CE=2 ,則滿足CE2+DE2=CD2 , 即CE⊥DE,
在RT△CED中,設OF=x,
∵F是等邊△ABD的中心,
∴ ,
,
則 ,
∴ ,解得x= ,
代入其中一個方程得,R= = = ,
∴該四面體的外接球半徑是 ,
故選:C.
根據(jù)三視圖知幾何體是三棱錐為棱長為4的正方體一部分,畫出直觀圖,由正方體的性質(zhì)求出棱長、判斷出各面形狀,畫出三棱錐C﹣ABD以及外接球,由△ABD是等邊三角形,判斷出球心O在△ABD的射影的位置,判斷線與線的位置關系,設出未知數(shù)畫出平面圖形,利用勾股定理列出方程組,求出該四面體的外接球半徑.
科目:高中數(shù)學 來源: 題型:
【題目】已知關于的函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)設,討論函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項為Sn , 點(n, ),(n∈N*)均在函數(shù)y=3x﹣2的圖象上.
(1)求數(shù)列{an}的通項公式.
(2)設bn= ,Tn為數(shù)列{bn}的前n項和,求使得Tn< 對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,△AOB和△COD為兩等腰直角三角形,A(﹣2,0),C(a,0),(a>0),設△AOB和△COD的
外接圓圓心分別為點M、N.
(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓,如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.
(1)求的最小值;
(2)若,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當 ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)f(x)的圖象經(jīng)過點 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器自上方的入口處,小球自由下落,小氣在下落的過程中,將遇到黑色障礙物3次,最后落入A袋或B袋中,已知小球每次遇到障礙物時,向左、右兩邊下落的概率分別是 ,
(1)分別求出小球落入A袋和B袋中的概率;
(2)在容器 入口處依次放入4個小球,記ξ為落入B袋中的小球個數(shù),求ξ的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com