分析 (1)利用極坐標(biāo)與直角坐標(biāo)的互化方法,可將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程(普通方程);
(2)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),代入圓的方程,整理可得t2-4tcosα-5=0,利用參數(shù)的幾何意義,建立方程,即可求直線的傾斜角α的值.
解答 解:(1)曲線C的極坐標(biāo)方程是ρ=6cosθ,可得ρ2=6ρcosθ,直角坐標(biāo)方程為x2+y2-6x=0,即(x-3)2+y2=9
(2)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),代入圓的方程,整理可得t2-4tcosα-5=0
設(shè)A,B對(duì)應(yīng)的參數(shù)為t1,t2,則t1+t2=4cosα,t1t2=-5,
∴|AB|=|t1-t2|=$\sqrt{16co{s}^{2}α+20}$=2$\sqrt{7}$,
∴cosα=±$\frac{\sqrt{2}}{2}$,
∵α∈[0,π),
∴α=$\frac{π}{4}$或$\frac{3π}{4}$.
點(diǎn)評(píng) 本題考查極坐標(biāo)化為直角坐標(biāo),考查參數(shù)方程的運(yùn)用,考查參數(shù)的幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4+5\sqrt{3}}{4}$ | B. | $\frac{8+5\sqrt{3}}{4}$ | C. | 3 | D. | $\frac{4+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (4,+∞) | C. | (0,4) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com