20.已知點M是半徑為4的圓C內(nèi)的一個定點,點P是圓C上的一個動點,線段MP的垂直平分線l與半徑CP相交于點Q,則|CQ|•|QM|的最大值為4.

分析 由已知得|CQ|+|QM|=|CQ|+|QP|=|CP|=4,從而4=|CQ|+|QM|≥2$\sqrt{|\overrightarrow{CQ}|•|\overrightarrow{QM}}|$,問題得以解決

解答 解:∵A是半徑為4的圓C內(nèi)一個定點,P是圓C上的一個動點,
線段MP的垂直平分線l與半徑CP相交于點Q,
∴|CQ|+|QM|=|CQ|+|QP|=|CP|=4,
∴4=|CQ|+|QM|≥2$\sqrt{|\overrightarrow{CQ}|•|\overrightarrow{QM}}|$,
∴|CQ|•|QM|≤4,
當(dāng)且僅當(dāng)Q為CP中點時取等號,
∴|CQ|•|QM|的最大值為4.
故答案為:4.

點評 本題考查兩線段積的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意圓形結(jié)合思想、均值定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.由數(shù)字2,0,1,7組成沒有重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|(a∈R).
(1)當(dāng)a=2時,解不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≥1;
(2)若不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≤x的解集包含[$\frac{1}{3}$,$\frac{1}{2}$],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{169}$=1的焦點坐標(biāo)為( 。
A.(5,0),(-5,0)B.(0,5),(0,-5)C.(0,12),(0,-12)D.(12,0),(-12,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)解不等式|x-1|+|x+2|≥5的解集.
(2)若關(guān)于x的不等式|ax-2|<3的解集為{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,∠ACB=$\frac{π}{6}$,若線段BA的延長線上存在點D,使∠BDC=$\frac{π}{4}$,則CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)估計該企業(yè)的職工對該部門評分不低于80的概率;
(Ⅲ)從評分在[40,60)的受訪職工中,隨機抽取2人,求此2人的評分都在[40,50)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,設(shè)拋物線C1:y2=-4mx(m>0)的準(zhǔn)線l與x軸交于橢圓C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點F2,F(xiàn)1為C2的左焦點.橢圓的離心率為e=$\frac{1}{2}$,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,M為C1上一動點,且在P,Q之間移動.
(1)當(dāng)$\frac{a}{2}+\frac{{\sqrt{3}}}$取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若存在n∈N*使得(ax+1)2n和(x+a)2n+1(其中a≠0)的展開式中含xn項的系數(shù)相等,則a的最大值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案