16.若函數(shù)f(x)=x2+2(a-1)x+2在[-4,4]上是單調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是a≤-3或a≥5.

分析 由已知中函數(shù)的解析式f(x)=x2+2(a-1)x+2,根據(jù)二次函數(shù)的圖象和性質(zhì),判斷出函數(shù)f(x)在區(qū)間(-∞,-a+1]上是減函數(shù),在區(qū)間[-a+1,+∞)上是增函數(shù),再由函數(shù)在區(qū)間[-4,4]上為單調(diào)函數(shù),可得區(qū)間在對(duì)稱軸的同一側(cè),進(jìn)而構(gòu)造關(guān)于a的不等式,解不等式即可得到實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=x2+2(a-1)x+2的圖象是開口方向朝上,
且以x=-a+1為對(duì)稱軸的拋物線,
∴函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,-a+1]上是減函數(shù),在區(qū)間[-a+1,+∞)上是增函數(shù),
∵函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[-4,4]上是單調(diào)函數(shù),
∴-a+1≤-4,或-a+1≥4,
解得a≥5或a≤-3.
故答案為:a≤-3或a≥5.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),其中根據(jù)函數(shù)f(x)在區(qū)間[-4,4]上為單調(diào)函數(shù),判斷出區(qū)間在對(duì)稱軸的同一側(cè),進(jìn)而構(gòu)造關(guān)于a的不等式是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程x±$\sqrt{3}$y=0,則C1與C2的離心率之積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$α+β=\frac{2π}{3},α>0,β>0$,當(dāng)sinα+2sinβ取最大值時(shí)α=θ,則cosθ=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某班現(xiàn)有學(xué)生40人,其中15人喜愛籃球運(yùn)動(dòng),20人喜愛排球運(yùn)動(dòng),另有10人對(duì)這兩項(xiàng)運(yùn)動(dòng)都不感興趣(即均不喜愛),則該班喜愛排球運(yùn)動(dòng)但不喜愛藍(lán)球運(yùn)動(dòng)的人數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知程序框圖如圖所示,當(dāng)輸入x=2時(shí),輸出結(jié)果為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓x2+y2=4與圓x2+y2-6x+8y-24=0的位置關(guān)系是( 。
A.相交B.相離C.內(nèi)切D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,則f[f(2)]的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.四棱錐P-ABCD的底面為矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E為側(cè)棱PC的中點(diǎn),則異面直線AE與PD所成角的余弦值為( 。
A.$\frac{{\sqrt{30}}}{10}$B.$-\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{5}$D.$-\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.當(dāng)x∈[2,3]時(shí),x2+ax+a+1<0恒成立,則a的范圍是(-∞,-$\frac{5}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案