14.平面內(nèi)三點(diǎn)A,B,C滿足|$\overrightarrow{BA}$|=3,|$\overrightarrow{BC}$|=4,$\overrightarrow{BA}$$•\overrightarrow{BC}$=0,M,N為平面內(nèi)的動(dòng)點(diǎn),且$\overrightarrow{AM}$為單位向量,若$\overrightarrow{MC}$=2$\overrightarrow{MN}$,則|$\overrightarrow{BN}$|的最大值與最小值的和為( 。
A.10B.8C.7D.5

分析 建立坐標(biāo)系,設(shè)M(cosθ,3+sinθ),求出|$\overrightarrow{BN}$|關(guān)于θ的函數(shù),根據(jù)三角函數(shù)的性質(zhì)求出|$\overrightarrow{BN}$|的最值.

解答 解:∵$\overrightarrow{BA}$$•\overrightarrow{BC}$=0,∴BA⊥BC,
∵|$\overrightarrow{AM}$|=1,∴M在以A為原點(diǎn),1為半徑的圓A上,
∵$\overrightarrow{MC}$=2$\overrightarrow{MN}$,∴N是MC的中點(diǎn),
以BC,BA為坐標(biāo)軸建立坐標(biāo)系,如圖:則B(0,0),C(4,0),A(0,3),
設(shè)M(cosθ,3+sinθ),則N($\frac{1}{2}$cosθ+2,$\frac{1}{2}$sinθ+$\frac{3}{2}$),
∴|$\overrightarrow{BN}$|=$\sqrt{(\frac{1}{2}cosθ+2)^{2}+(\frac{1}{2}sinθ+\frac{3}{2})^{2}}$=$\sqrt{\frac{13}{2}+2cosθ+\frac{3}{2}sinθ}$=$\sqrt{\frac{13}{2}+\frac{5}{2}sin(θ+γ)}$,
∴|$\overrightarrow{BN}$|的最大值為$\sqrt{\frac{13}{2}+\frac{5}{2}}$=3,最小值為$\sqrt{\frac{13}{2}-\frac{5}{2}}$=2,
∴|$\overrightarrow{BN}$|的最大值與最小值的和為5.
故選D.

點(diǎn)評(píng) 本題考查了平面向量的運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系中,已知點(diǎn)A(-1,0),B(1,2),C(3,-1),點(diǎn)P(x,y)為△ABC邊界及內(nèi)部的任意一點(diǎn),則x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,D為BC的中點(diǎn),∠BAD+∠C≥90°.
(Ⅰ)求證:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=-$\frac{1}{4}$,AB=2,AD=3,求AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0.
(Ⅰ)求C;
(Ⅱ)若a=4$\sqrt{3}$sinA,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀右邊的程序框圖,運(yùn)行相應(yīng)的程序,輸出k的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=4tan(x+$\frac{π}{6}$)cos2(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的定義域與最小正周期;
(Ⅱ)討論f(x)在區(qū)間(0,$\frac{π}{3}$)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1、F2是橢圓C1與雙曲線C2的公共焦點(diǎn),點(diǎn)P是C1與C2的公共點(diǎn),若橢圓C1的離心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,則雙曲線C2的離心率e2的最小值為(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正項(xiàng)等比數(shù)列{an}和正項(xiàng)等差數(shù)列{bn}中,已知a1,a2017的等比中項(xiàng)與b1,b2017的等差中項(xiàng)相等,且$\frac{1}{_{1}}$+$\frac{4}{_{2017}}$≤1,當(dāng)a1009取得最小值時(shí),等差數(shù)列{bn}的公差d的取值集合為( 。
A.{d|d≥$\frac{1}{672}$}B.{d|0<d<$\frac{1}{672}$}C.{$\frac{1}{672}$}D.{d|d≥$\frac{3}{2017}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=ax2+bx+c(a>b>c),且f(1)=0,若函數(shù)f(x)的導(dǎo)函數(shù)圖象與函數(shù)f(x)的圖象交于A,B兩點(diǎn),C,D是點(diǎn)A,B在x軸上的投影,則線段|CD|長(zhǎng)的取值范圍為($\sqrt{5}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案