9.如圖,在三棱錐P-ABC中,△PAB和△PAC均為邊長是$\sqrt{2}$的正三角形,且∠BAC=90°,O為BC的中點(diǎn).
(Ⅰ)證明:PO⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值.

分析 (Ⅰ)推導(dǎo)出PO⊥BC,PO⊥OA,由此能證明PO⊥平面ABC.
(Ⅱ)由OA,OB,OP為三條兩兩垂直的直線,建立間直角坐標(biāo)系,利用向量法能求出直線PB與平面PAC所成角的正弦值.

解答 證明:(Ⅰ)∵△PAB和△PAC均為邊長是$\sqrt{2}$的正三角形,
∴PB=PC,又∵O為BC的中點(diǎn),
∴PO⊥BC,①
∵∠BAC=90°,且AB=AC=$\sqrt{2}$,
∴BC=2,即BO=CO=AO=1,∴PO=$\sqrt{3}$,
在△POA中,PA=2,PO=$\sqrt{3}$,AO=1,
∴PO⊥OA,②
又∵OA∩BC=O,
由①②③,得PO⊥平面ABC.
解:(Ⅱ)由(Ⅰ)知OA,OB,OP為三條兩兩垂直的直線,
∴建立如圖所示的空間直角坐標(biāo)系,
則P(0,0,1),A(0,1,0),B(1,0,0),C(-1,0,0),
∴$\overrightarrow{PB}=(1,0,-1)$,$\overrightarrow{PA}$=(0,1,-1),$\overrightarrow{CA}$=(1,1,0),
設(shè)平面PAC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=y-z=0}\\{\overrightarrow{n}•\overrightarrow{CA}=x+y=0}\end{array}\right.$,取y=-1,得$\overrightarrow{n}$=(1,-1,-1),
設(shè)直線PB與平面PAC所成角為θ,
則sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{PB}|}{|\overrightarrow{n}|•|\overrightarrow{PB}|}$=$\frac{2}{\sqrt{2}×\sqrt{3}}$=$\frac{\sqrt{6}}{3}$,
∴直線PB與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{3}$.

點(diǎn)評 本題考查線面垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義在R的函數(shù)f(x)滿足以下條件:
①對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②當(dāng)x>0時(shí),f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)-a≥af(x)-5對任意x恒成立,求a的取值范圍;
(3)求不等式$f({f(x)})≥\frac{{7-f({x+1})}}{{1+f({x+1})}}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x-1)=x2+4x-5,則f(x)的表達(dá)式是(  )
A.x2+6xB.x2+8x+7C.x2+2x-3D.x2+6x-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合M={y|y=2-x},N={x|y=x},則M∩N=(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸入n=5,則輸出的結(jié)果是( 。
A.$\frac{5}{6}$B.$\frac{6}{7}$C.$\frac{4}{5}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=a|x+1|-|x-1|,a≥1.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)<1;
(Ⅱ)若實(shí)數(shù)a的取值范圍是[3,4],求f(x)的圖象與直線y=2所圍成的三角形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.雙曲線$\frac{{y}^{2}}{3}$-x2=1的兩條漸近線的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A(-1,2),B(3,1),若直線ax-y-2=0與線段AB相交,則a的范圍是( 。
A.[-4,1]B.[1,4]C.(-∞,-4]∪[1,+∞)D.(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心,
設(shè)函數(shù)g(x)=x3-3x2+4x+2,利用上述探究結(jié)果
計(jì)算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

同步練習(xí)冊答案