如圖所示,是定義在區(qū)間上的奇函數(shù),令,并有關(guān)于函數(shù)的四個(gè)論斷:

①若,對(duì)于內(nèi)的任意實(shí)數(shù),恒成立;
②函數(shù)是奇函數(shù)的充要條件是;
③任意的導(dǎo)函數(shù)有兩個(gè)零點(diǎn);
④若,則方程必有3個(gè)實(shí)數(shù)根;
其中,所有正確結(jié)論的序號(hào)是________

①②

解析試題分析:①對(duì)于內(nèi)的任意實(shí)數(shù),恒成立,由函數(shù)的圖象可以看出,函數(shù)在內(nèi)單調(diào)增函數(shù),故命題正確;
②若,則函數(shù)是奇函數(shù),此命題正確,時(shí),是一個(gè)奇函數(shù);
時(shí),結(jié)論不成立. 故不正確;
④若,則方程必有3個(gè)實(shí)數(shù)根,本題中沒有具體限定b的范圍,故無(wú)法判斷有幾個(gè)根;
綜上①②正確,故答案為①②.
考點(diǎn):函數(shù)的單調(diào)性、奇偶性,函數(shù)與方程,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

=2013,則+tan2α=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)f(x)=cos2x-2sinxcosx的最小正周期是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)函數(shù),現(xiàn)有下列命題:
①函數(shù)是偶函數(shù);
②函數(shù)的最小正周期是;
③點(diǎn)是函數(shù)的圖象的一個(gè)對(duì)稱中心;
④函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
其中是真命題的是______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)的圖象為C:
①圖象C關(guān)于直線對(duì)稱; ②函數(shù)在區(qū)間內(nèi)是增函數(shù);
③由的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C;
以上三個(gè)命題中,其中的真命題是_________(寫出所有真命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)f(x)=-ax(a∈R)既有最大值又有最小值,則f(x)值域?yàn)開______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

某學(xué)生對(duì)函數(shù)f(x)=2x·cosx的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:
①函數(shù)f(x)在[-π,0]上單調(diào)遞增,在[0,π]上單調(diào)遞減;
②點(diǎn)(,0)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心;
③函數(shù)y=f(x)圖象關(guān)于直線x=π對(duì)稱;
④存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立.
其中正確的結(jié)論是__________.(填寫所有你認(rèn)為正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于,有如下四個(gè)命題: 
①若 ,則為等腰三角形;②若,則是不一定直角三角形;③若,則是鈍角三角形④若,則是等邊三角形.其中正確的命題是         .

查看答案和解析>>

同步練習(xí)冊(cè)答案