A. | x2+y2=16 | B. | x2+y2=16(x≥4) | C. | x2-y2=16 | D. | x2-y2=16(x≥4) |
分析 根據(jù)基本不等式的性質(zhì),求得x的取值范圍,分別將x及y平方作差得:x2-y2=16,即可求得答案.
解答 解:由曲線的參數(shù)方程$\left\{\begin{array}{l}x=4\sqrt{t}+\frac{1}{{\sqrt{t}}}\\ y=4\sqrt{t}-\frac{1}{{\sqrt{t}}}\end{array}\right.(t$為參數(shù)),分別將x及y平方作差:則x2-y2=(4$\sqrt{t}$+$\frac{1}{\sqrt{t}}$)2-(4$\sqrt{t}$-$\frac{1}{\sqrt{t}}$)2=16t+8$\sqrt{t}$×$\frac{1}{\sqrt{t}}$+$\frac{1}{t}$-(16t-8$\sqrt{t}$×$\frac{1}{\sqrt{t}}$+$\frac{1}{t}$)=16,
由x=4$\sqrt{t}$+$\frac{1}{\sqrt{t}}$≥2$\sqrt{4\sqrt{t}×\frac{1}{\sqrt{t}}}$=4,即x≥4,
曲線轉(zhuǎn)化成普通方程:x2-y2=16(x≥4),
故選:D.
點(diǎn)評(píng) 本題考查雙曲線的參數(shù)方程,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{16}$ | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com