分析 (Ⅰ)求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可得到結(jié)論;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,求出函數(shù)的單調(diào)區(qū)間,從而確定m的范圍即可.
(Ⅲ)利用函數(shù)零點的性質(zhì),結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,進行轉(zhuǎn)化即可證明不等式.
解答 解:(Ⅰ)f′(x)=$\frac{1}{x}$-m=$\frac{1-mx}{x}$,x∈(0,+∞),
當(dāng)m≤0時,f′(x)>0,f(x)在(0,+∞)遞增,
m>0時,令f′(x)>0,解得:0<x<$\frac{1}{m}$,令f′(x)<0,解得:x>$\frac{1}{m}$,
故函數(shù)f(x)在(0,$\frac{1}{m}$)遞增,在($\frac{1}{m}$,+∞)遞減;
(Ⅱ)若對于?x∈[1,+∞),f(x)≤-$\frac{m}{x}$恒成立,
則g(x)=lnx-mx+$\frac{m}{x}$≤0在x∈[1,+∞)恒成立,
g′(x)=$\frac{-{mx}^{2}+x-m}{{x}^{2}}$,
對于-mx2+x-m=0,△=1-4m2,
①m≥$\frac{1}{2}$時,△≤0,g′(x)≤0在x∈[1,+∞)恒成立,
g(x)在[1,+∞)遞減,g(x)≤g(1)=0,符合題意;
②0<m<$\frac{1}{2}$時,設(shè)-mx2+x-m=0的2個根是a,b,(a<b),
∵a+b=$\frac{1}{m}$,ab=1,故b>1,
∵g′(1)=1-2m>0,∴x∈[1,b)時,g′(x)>0,g(x)遞增,
此時,g(x)>g(1)=0,不合題意,
綜上,m的范圍是[$\frac{1}{2}$,+∞);
(III)∵f(x)有兩個相異零點,∴設(shè)lnx1=mx1,lnx2=mx2,①
即lnx1-lnx2=m(x1-x2),∴$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$=m②
而x1•x2>e2,等價于:lnx1+lnx2>2,即m(x1+x2)>2,③
由①②③得:$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$(x1+x2)>2,
不妨設(shè)x1>x2>0,則t=$\frac{{x}_{1}}{{x}_{2}}$>1,
上式轉(zhuǎn)化為:lnt>$\frac{2(t-1)}{t+1}$,t>1
設(shè)H(t)=lnt-$\frac{2(t-1)}{t+1}$,t>1,
則H′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
故函數(shù)H(t)是(1,+∞)上的增函數(shù),
∴H(t)>H(1)=0,
即不等式lnt>$\frac{2(t-1)}{t+1}$成立,
故所證不等式x1•x2>e2成立.
點評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系和應(yīng)用,以及利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的最值和零點問題,綜合性較強,運算量較大.
科目:高中數(shù)學(xué) 來源: 題型:解答題
銷售單價/萬元 | [8,10) | [10,12) | [12,14) | [14,16) | [16,18) | [18,20] |
頻數(shù)/輛 | 5 | 10 | 20 | a | 20 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
天數(shù)t(天) | 3 | 4 | 5 | 6 | 7 |
繁殖個數(shù)y(千個) | 2.5 | 3 | 4 | 4.5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com