13.了研究某種細(xì)菌在特定環(huán)境下隨時(shí)間變化的繁殖情況,得如下實(shí)驗(yàn)數(shù)據(jù):
天數(shù)t(天)34567
繁殖個(gè)數(shù)y(千個(gè))2.5344.56
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測t=8時(shí),細(xì)菌繁殖個(gè)數(shù).

分析 (1)分別求出$\widehat$,$\widehat{a}$的值,代入回歸方程即可;
(2)將t=8代入方程求出$\widehat{y}$的值即可.

解答 解:(1)由表中數(shù)據(jù)計(jì)算得,
$\overline{t}$=5,$\overline{y}$=4,
$\sum_{i=1}^{5}$(ti-$\overline{t}$)(yi-$\overline{y}$)=8.5,
$\sum_{i=1}^{5}$(ti-$\overline{t}$)2=10,
故$\widehat$=0.85,
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$=4-0.85×5=-0.25,
所以回歸方程為$\widehat{y}$=0.85t-0.25.
(2)將t=8代入(1)的回歸方程中得:
$\widehat{y}$=0.85×8-0.25=6.55.
故預(yù)測t=8時(shí),細(xì)菌繁殖個(gè)數(shù)為6.55千個(gè).

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知${(\sqrt{x}-\frac{2}{x^2})^n}\;(n∈{N_+})$的展開式中第五項(xiàng)系數(shù)與第三項(xiàng)的系數(shù)的比值是10.
(1)求展開式的各項(xiàng)系數(shù)和及二項(xiàng)式系數(shù)和;
(2)求展開式中x-1的項(xiàng)的系數(shù);
(3)求展開式中系數(shù)絕對值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-mx,x∈(0,+∞),m∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若對于?x∈[1,+∞),f(x)≤-$\frac{m}{x}$恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某單位決定投資3200元建倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米造價(jià)40元,兩面墻砌磚,每米造價(jià)45元,頂部每平方米造價(jià)20元.
(1)設(shè)鐵柵長為x米,一堵磚墻長為y米,求函數(shù)y=f(x)的解析式.
(2)為使倉庫總面積S達(dá)到最大,正面鐵柵應(yīng)設(shè)計(jì)為多長?并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=ln\frac{x}{2}+\frac{1}{2}$,g(x)=ex-2,若存在x1>0,x2∈R,使得f(x1)=g(x2),則x1-x2的最小值為ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=log2(1+x)(x>0)的反函數(shù)f-1(x)=y=2x-1(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x-2ax+b,且f(1)=$\frac{3}{2}$,f(2)=$\frac{15}{4}$.
(1)求a,b;
(2)判斷f(x)的奇偶性;
(3)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知?jiǎng)狱c(diǎn)P在曲線2y2-x=0上移動(dòng),則點(diǎn)A(-2,0)與點(diǎn)P連線中點(diǎn)的軌跡方程是(  )
A.y=2x2B.y=8x2C.x=4y2-1D.y=4x2-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知曲線y=f(x)在x=5處的切線方程是y=-2x+8,則f(5)與f′(5)分別為(  )
A.3,3B.3,-1C.-1,3D.-2,-2

查看答案和解析>>

同步練習(xí)冊答案