15.半徑為1的球O內(nèi)有一個(gè)內(nèi)接正三棱柱,當(dāng)正三棱柱的側(cè)面積最大時(shí),球的表面積與該正三棱柱的側(cè)面積之差是4π-3$\sqrt{3}$.

分析 如圖所示,設(shè)球心為O點(diǎn),上下底面的中心分別為O1,O2.設(shè)正三棱柱的底面邊長(zhǎng)與高分別為x,h.可得O2A=$\frac{\sqrt{3}}{3}$x.在Rt△OAO2中,利用勾股定理可得$\frac{{h}^{2}}{4}+\frac{1}{3}{x}^{2}$=1,由于S側(cè)=3xh,可得S側(cè)2=9x2h2=12x2(3-x2)$≤12(\frac{{x}^{2}+3-{x}^{2}}{2})^{2}$,即可得出.

解答 解:如圖所示,
設(shè)球心為O點(diǎn),上下底面的中心分別為O1,O2
設(shè)正三棱柱的底面邊長(zhǎng)與高分別為x,h.
則O2A=$\frac{\sqrt{3}}{3}$x,
在Rt△OAO2中,$\frac{{h}^{2}}{4}+\frac{1}{3}{x}^{2}$=1,
化為h2=4-$\frac{4}{3}$x2
∵S側(cè)=3xh,
∴S側(cè)2=9x2h2=12x2(3-x2)$≤12(\frac{{x}^{2}+3-{x}^{2}}{2})^{2}$=27.
當(dāng)且僅當(dāng)x=$\frac{\sqrt{6}}{2}$時(shí)取等號(hào),S側(cè)=3$\sqrt{3}$.
∴球的表面積與該正三棱柱的側(cè)面積之差是4π-3$\sqrt{3}$,
故答案為:4π-3$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正三棱柱的性質(zhì)、勾股定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.按程序框圖(如圖)執(zhí)行,輸出的第4個(gè)數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等差數(shù)列{an}的公差為d,an>0,前n項(xiàng)和為Sn,若a2,S3,a2+S5成等比數(shù)列,則$\fracj7zt7fv{a_1}$=(  )
A.0B.$\frac{3}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在平面四邊形ABCD中,DA⊥AB,CE⊥BE,DE=1,DC=2,AB=2$\sqrt{7}$,∠CDE=$\frac{2π}{3}$
(Ⅰ)求sin∠CED的值及BC的長(zhǎng);
(Ⅱ)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在(x-$\sqrt{2}$)2016的二項(xiàng)展開(kāi)式中,含x的奇次冪的項(xiàng)之和為S,當(dāng)x=$\sqrt{2}$時(shí),S=-23023

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);  (2)A∩∁A(B∩C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=lnx+\frac{2a}{x}$.
(1)若函數(shù)f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在[1,e]上的最小值為3,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2+2aln(1-x)(a∈R),試求:
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)在[-1,1)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=cos2($\frac{π}{4}$-x)-$\frac{1}{2}$(cosx-sinx)2-$\frac{{\sqrt{3}}}{2}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f($\frac{A}{2}$)=0,且a=1,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案