1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點是A(0,1),B,C,是橢圓上兩點,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0.
(1)若橢圓的另一個頂點是拋物線y2=8x的焦點,求橢圓的離心率;
(2)若△ABC面積的最大值為$\frac{27}{8}$,求a的值.

分析 (1)由已知的b,再由拋物線焦點求得a,結(jié)合隱含條件求得c,則橢圓離心率可求;
(2)由題意知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$,且AB、AC所在直線斜率存在,設(shè)出兩直線方程,與橢圓方程聯(lián)立,求出B、C坐標(biāo),代入三角形面積公式,利用換元法結(jié)合基本不等式得到面積最大值,從而求得a值.

解答 解:(1)由拋物線y2=8x,得2p=8,p=4,
∴$\frac{p}{2}=2$,即拋物線y2=8x的焦點坐標(biāo)為(2,0),
∴橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為(2,0),即a=2.
又橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點是A(0,1),可得b=1,
∴$c=\sqrt{{a}^{2}-^{2}}=\sqrt{3}$,則e=$\frac{\sqrt{3}}{2}$;
(2)由題意知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$,
不妨設(shè)AB斜率k>0,則AB:y=kx+1,AC:y=-$\frac{1}{k}$x+1.
由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$,得(1+a2k2)x2+2a2kx=0,
解得${x}_{B}=-\frac{2{a}^{2}k}{1+{a}^{2}{k}^{2}}$,同理${x}_{C}=\frac{2{a}^{2}k}{{a}^{2}+{k}^{2}}$,
|AB|=$\sqrt{{{x}_{B}}^{2}+({y}_{B}-1)^{2}}$=$\frac{2{a}^{2}k\sqrt{1+{k}^{2}}}{1+{a}^{2}{k}^{2}}$,同理可得:|AC|=$\frac{2{a}^{2}\sqrt{1+{k}^{2}}}{{a}^{2}+{k}^{2}}$.
∴S=$\frac{1}{2}$|AB||AC|=2a4×$\frac{k(1+{k}^{2})}{{a}^{2}{k}^{4}+{a}^{4}{k}^{2}+{k}^{2}+{a}^{2}}$=2a4×$\frac{k+\frac{1}{k}}{{a}^{2}(k+\frac{1}{k})^{2}+({a}^{2}-1)^{2}}$,
令k+$\frac{1}{k}$=t≥2,
則S=2a4×$\frac{t}{{a}^{2}{t}^{2}+({a}^{2}-1)^{2}}$=$\frac{2{a}^{4}}{{a}^{2}t+\frac{(a-1)^{2}}{t}}$≤$\frac{{a}^{3}}{{a}^{2}-1}$,當(dāng)且僅當(dāng)t=$\frac{{a}^{2}-1}{a}$≥2,
即a≥1+$\sqrt{2}$時取等號.
由$\frac{{a}^{3}}{{a}^{2}-1}=\frac{27}{8}$,解得a=3,或a=$\frac{3+\sqrt{297}}{16}$(舍去).
1<a<1+$\sqrt{2}$時無解.
∴a=3.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、兩點之間的距離公式、基本不等式的性質(zhì)、換元方法,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(-$\sqrt{3}$,t).若$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{c}$垂直,則實t數(shù)的值為( 。
A.1B.-1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b=3,c=1,A=2B
(1)求a的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,A=60°,c=2,且${S_{△ABC}}=\frac{{\sqrt{3}}}{2}$,則邊a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overline z$是z的共軛復(fù)數(shù),且|z|-$\overline z$=3+4i,則z的虛部是( 。
A.$\frac{7}{6}$B.$-\frac{7}{6}$C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.己知三點A(-3,3),B(0,1)和C(1,0),則|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=x+$\frac{a}{x}$具有如下性質(zhì):當(dāng)a>0時,該函數(shù)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+$\frac{{2}^}{x}$(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+$\frac{c}{{x}^{2}}$(常數(shù) c>0)奇偶性和定義域內(nèi)的單調(diào)性;
(3)對函數(shù)y=x+$\frac{a}{x}$和y=x2+$\frac{a}{{x}^{2}}$(常數(shù) a>0)作出推廣,使的它們都是你所推廣的函數(shù)的特例,研究其單調(diào)性(只需寫出結(jié)論,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知兩個半徑不等的圓盤疊放在一起(有一軸穿過它們的圓心),兩圓盤上分別有互相垂直的兩條直徑將其分為四個區(qū)域,小圓盤上所寫的實數(shù)分別記為x1,x2,x3,x4,大圓盤上所寫的實數(shù)分別記為y1,y2,y3,y4,如圖所示.將小圓盤逆時針旋轉(zhuǎn)i(i=1,2,3,4)次,每次轉(zhuǎn)動90°,記Ti(i=1,2,3,4)為轉(zhuǎn)動i次后各區(qū)域內(nèi)兩數(shù)乘積之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,則以下結(jié)論正確的是( 。
A.T1,T2,T3,T4中至少有一個為正數(shù)B.T1,T2,T3,T4中至少有一個為負數(shù)
C.T1,T2,T3,T4中至多有一個為正數(shù)D.T1,T2,T3,T4中至多有一個為負數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的方程${π^x}=\frac{a+1}{2-a}$只有正實數(shù)解,則a的取值范圍是($\frac{1}{3}$,2).

查看答案和解析>>

同步練習(xí)冊答案