分析 ?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立?$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,即函數(shù)f(x)在x∈(0,+∞)上單調(diào)遞增.可得f′(x)=3ax2-lnx-1≥0,在x∈(0,+∞)上恒成立.即3a≥$\frac{lnx+1}{{x}^{2}}$=g(x),利用導(dǎo)數(shù)研究單調(diào)性極值與最值即可得出.
解答 解:?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,
?$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,?x1、x2∈(0,+∞)且x1≠x2,
∴函數(shù)f(x)在x∈(0,+∞)上單調(diào)遞增.
∴f′(x)=3ax2-lnx-1≥0,在x∈(0,+∞)上恒成立.
即3a≥$\frac{lnx+1}{{x}^{2}}$=g(x),
g′(x)=$\frac{\frac{1}{x}•{x}^{2}-2x(lnx+1)}{{x}^{4}}$=$\frac{-(1+2lnx)}{{x}^{3}}$.
可知:x=$\frac{1}{\;}\sqrt{e}$時(shí),g(x)極大值即最大值,g($\frac{1}{\sqrt{e}}$)=$\frac{e}{2}$.
∴3a≥$\frac{e}{2}$,解得a≥$\frac{e}{6}$.
∴實(shí)數(shù)a的取值范圍是$[\frac{e}{6},+∞)$.
故答案為:$[\frac{e}{6},+∞)$.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式與付出的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}-1$ | B. | $\sqrt{5}+1$ | C. | $2\sqrt{5}+2$ | D. | $2\sqrt{5}-2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com