已知△ABC的三個(gè)頂點(diǎn)在球面上,且AB=1,AC=3,BC=,球心到平面ABC的距離為,則該球的表面積等于              .


解析:

: 在△ABC中,由余弦定理得設(shè)的外接圓半徑為,球的半徑為,由正弦定理得,,再由因此球的表面積為.

  點(diǎn)評(píng):考察球面上的距離問(wèn)題,正弦定理在解三角形時(shí)的運(yùn)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在半徑為1的球面上,且AB=1,BC=
3
.若A、C兩點(diǎn)的球面距離為
π
2
,則球心O到平面ABC的距離為( 。
A、
1
4
B、
2
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的球面面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•樂(lè)山二模)已知△ABC的三個(gè)頂點(diǎn)在同一個(gè)球面上,∠BAC=60°,AB=1,AC=2,若球心到平面ABC的距離為1,則該球的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)一模)已知△ABC的三個(gè)頂點(diǎn)在拋物線Γ:x2=y上運(yùn)動(dòng).
(1)求Γ的焦點(diǎn)坐標(biāo);
(2)若點(diǎn)A在坐標(biāo)原點(diǎn),且∠BAC=
π
2
,點(diǎn)M在BC上,且
AM
BC
= 0
,求點(diǎn)M的軌跡方程;
(3)試研究:是否存在一條邊所在直線的斜率為
2
的正三角形ABC,若存在,求出這個(gè)正三角形ABC的邊長(zhǎng),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案