分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論m的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題等價(jià)于對(duì)任意的m∈(4,6),恒有(a+ln3)(2-m)-2ln3>5-2m-mln3-$\frac{1}{3}$-12+6m成立,即(2-m)a>$\frac{2}{3}$-4(2-m),根據(jù)m>2,分離a,從而求出a的范圍即可.
解答 解:(1)函數(shù)定義域?yàn)椋?,+∞),
f′(x)=$\frac{(2x-1)[(2-m)x+1]}{{x}^{2}}$,
令f′(x)=0,得x1=$\frac{1}{2}$,x2=-$\frac{1}{2-m}$,
當(dāng)m=4時(shí),f'(x)≤0,函數(shù)f(x)的在定義域(0,+∞)單調(diào)遞減;
當(dāng)m>4時(shí),由f'(x)>0,得-$\frac{1}{2-m}$<x<$\frac{1}{2}$;由f′(x)<0,得0<x<-$\frac{1}{2-m}$或x>$\frac{1}{2}$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-$\frac{1}{2-m}$,$\frac{1}{2}$),遞減區(qū)間為(0,-$\frac{1}{2-m}$),($\frac{1}{2}$,+∞).
(2)由(1)得:m∈(4,6)時(shí),函數(shù)f(x)在[1,3]遞減,
∴x∈[1,3]時(shí),f(x)max=f(1)=5-2m,f(x)min=f(3)=mln3+$\frac{1}{3}$+12-6m,
問(wèn)題等價(jià)于:對(duì)任意的m∈(4,6),恒有(a+ln3)(2-m)-2ln3>5-2m-mln3-$\frac{1}{3}$-12+6m成立,
即(2-m)a>$\frac{2}{3}$-4(2-m),
∵m>2,則a<$\frac{2}{3(2-m)}$-4,
∴a<( $\frac{2}{3(2-m)}$-4)min,
設(shè)m∈[4,6),則m=4時(shí),$\frac{2}{3(2-m)}$-4取得最小值-$\frac{13}{3}$,
故a的范圍是(-∞,-$\frac{13}{3}$].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查分類討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com