15.定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2-x+x,則g(2)=$\frac{1}{8}$.

分析 根據(jù)函數(shù)奇偶性的性質(zhì)建立方程組進(jìn)行求解即可.

解答 解:∵定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2-x+x,
∴f(2)+g(2)=2-2+2,①
f(-2)+g(-2)=22-2=2,
即f(2)-g(2)=2,②
①-②得2g(2)=2-2=$\frac{1}{4}$,
則g(2)=$\frac{1}{8}$,
故答案為:$\frac{1}{8}$.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)建立方程組是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.德國(guó)數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半 (即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第6項(xiàng)為1(注:1可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為( 。
A.3B.4C.5D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\frac{π}{4}<α<\frac{3π}{4},0<β<\frac{π}{4},cos(\frac{π}{4}-α)=\frac{3}{5},sin(\frac{3π}{4}+β)=\frac{5}{13}$,則sin(α+β)=( 。
A.$-\frac{56}{65}$B.$\frac{56}{65}$C.$-\frac{16}{65}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)(1)f(x)=3lnx;(2)f(x)=3x2+1;(3)f(x)=3ex;(4)$f(x)=\frac{3}{x}$.其中滿足對(duì)于任意x1∈D(其中D為函數(shù)的定義域),相應(yīng)地存在唯一的x2∈D,使$\sqrt{f({x_1})f({x_2})}=3$的函數(shù)的序號(hào)為(3)、(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)={x^2}-({a+\frac{1}{a}})x+1$,實(shí)數(shù)a>0.
(1)比較a與$\frac{1}{a}$的大。
(2)解關(guān)于x的不等式:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合$A=\left.{\left\{{x\left|{\frac{3x-5}{x+1}≤1,x∈R}\right.}\right.}\right\}$,集合B={x|x-a|≤1,x∈R}.
(1)求集合A;
(2)若B∩∁RA=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合U={-2,-1,0,1,2},A={1,2},B={-2,-1,2},則A∪(∁UB)={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)集合A={x|1<x<3,x∈R},B={x||x-a|<4,x∈R},若x∈A是x∈B的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知拋物線的參數(shù)方程為$\left\{\begin{array}{l}x=8{t^2}\\ y=8t\end{array}\right.$(t為參數(shù)),則該拋物線的焦點(diǎn)坐標(biāo)為( 。
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案