【題目】一個(gè)盒子里裝有大小均勻的6個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4;白色球2個(gè),編號(hào)分別為4,5,從盒子中任取3個(gè)小球(假設(shè)取到任何—個(gè)小球的可能性相同).
(1)求取出的3個(gè)小球中,含有編號(hào)為4的小球的概率;
(2)在取出的3個(gè)小球中,小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,數(shù)學(xué)期望為
【解析】
(1)計(jì)算取出的3個(gè)小球所有的結(jié)果數(shù),然后計(jì)算含有編號(hào)為4的結(jié)果數(shù),最后利用古典概型進(jìn)行計(jì)算,可得結(jié)果.
(2)列出的所有可能取值,并計(jì)算相對應(yīng)的概率,然后畫出分布列,根據(jù)期望公式,可得結(jié)果.
(1)由題可知:
取出的3個(gè)小球所有的結(jié)果數(shù)
含有編號(hào)為4的結(jié)果數(shù)
所以所求得概率為
(2)所有得可能取值為:3,4,5
所以的分布列為
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),,三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評分?jǐn)?shù)如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);
(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),是函數(shù)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)若方程在內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:函數(shù)在區(qū)間存在唯一的極小值點(diǎn),且;
(2)證明:函數(shù)有且僅有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了 105 個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有 55 個(gè)樣本,服藥但患病的仍有 10 個(gè)樣本,沒有服藥且未患病的有 30個(gè)樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);
(2)請問能有多大把握認(rèn)為藥物有效?
(參考公式:獨(dú)立性檢驗(yàn)臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計(jì) | |
服藥 | |||
沒服藥 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線()與橢圓交于,兩點(diǎn)(點(diǎn)在軸的上方).
(1)若,求的面積;
(2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列命題正確的是______填上你認(rèn)為正確的所有命題的序號(hào)
函數(shù)的單調(diào)遞增區(qū)間是;函數(shù)的圖像關(guān)于點(diǎn)對稱;
函數(shù)的圖像向左平移個(gè)單位長度后,所得的圖像關(guān)于y軸對稱,則m的最小值是;
若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市10萬名男生的身高服從正態(tài)分布.現(xiàn)從某學(xué)校高中男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和190cm之間,將身高的測量結(jié)果按如下方式分成5組:第1組[160,166),第2組[166,172),...,第5組[184,190]下表是按上述分組方法得到的頻率分布表:
分組 | [160,166) | [166,172) | [172,178) | [178,184) | [184,190] |
人數(shù) | 3 | 10 | 24 | 10 | 3 |
這50個(gè)數(shù)據(jù)的平均數(shù)和方差分別比10萬個(gè)數(shù)據(jù)的平均數(shù)和方差多1和6.68,且這50個(gè)數(shù)據(jù)的方差為.(同組中的身高數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表):
(1)求,;
(2)給出正態(tài)分布的數(shù)據(jù):,.
(i)若從這10萬名學(xué)生中隨機(jī)抽取1名,求該學(xué)生身高在(169,179)的概率;
(ii)若從這10萬名學(xué)生中隨機(jī)抽取1萬名,記為這1萬名學(xué)生中身高在(169,184)的人數(shù),求的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com