20.2014年5月12日,國家統(tǒng)計局公布了《2013年農(nóng)民工監(jiān)測調(diào)查報告》,報告顯示:我國農(nóng)民工收入持續(xù)快速增長.某地區(qū)農(nóng)民工人均月收入增長率如圖1,并將人均月收入繪制成如圖2的不完整的條形統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖來判斷以下說法錯誤的是( 。
A.2013年農(nóng)民工人均月收入的增長率是10%
B.2011年農(nóng)民工人均月收入是2205元
C.小明看了統(tǒng)計圖后說:“農(nóng)民工2012年的人均月收入比2011年的少了”
D.2009年到2013年這五年中2013年農(nóng)民工人均月收入最高

分析 由直接利用折線統(tǒng)計圖得出答案即可判斷A;直接利用條形統(tǒng)計圖得出答案即可判斷B,D
利用2012年農(nóng)民工人均月收入增長率進而求出2012年的月平均收入,進而得出答案判斷C.

解答 解:A:由折現(xiàn)統(tǒng)計圖可得出:2013年農(nóng)民工人均月收入的增長率是:10%;故正確,
B:由條形統(tǒng)計圖可得出:2011年農(nóng)民工人均月收入是:2205元;故正確
C:∵2012年農(nóng)民工人均月收入是:2205×(1+20%)=2646(元)>2205元,
∴農(nóng)民工2012年的人均月收入比2011年的少了,是錯誤的.故錯誤,
D:由條形統(tǒng)計圖可得出,2009年到2013年這五年中2013年農(nóng)民工人均月收入最高,
故選:C

點評 此題主要考查了條形統(tǒng)計圖以及折線統(tǒng)計圖的應用,利用圖形獲取正確信息是解題關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$與雙曲線$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$有相同的焦點,且兩曲線的離心率互為倒數(shù),則雙曲線漸近線的傾斜角的正弦值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.過點P(1,-3)的直線既與拋物線y=x2相切,又與圓(x-2)2+y2=5相切,則切線的斜率為( 。
A.-6B.-2C.-1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足$\sqrt{3}ccos(2016π-B)-sin(2017π+C)=0$.
(1)求角B的大。
(2)若動點D在△ABC的外接圓上,且點D,B不在AC的同一側(cè),AC=7,試求△ACD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在四棱柱ABCD-A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1=$\sqrt{6}$,E為A1B1的中點.
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,橢圓與雙曲線有公共焦點F1,F(xiàn)2,它們在第一象限的交點為A,且AF1⊥AF2
∠AF1F2=30°,則橢圓與雙曲線的離心率的之積為( 。
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,Sn=2an-3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某路口的紅綠燈,紅燈時間為30秒,黃燈時間為5秒,綠燈時間為40秒,假設你在任何時間到達該路口是等可能的,則當你到達該路口時,看見不是黃燈的概率是(  )
A.$\frac{14}{15}$B.$\frac{1}{15}$C..$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x)=ex(2x-3)-ax2+2ax+b,若函數(shù) f(x)存在兩個極值點x1,x2,且極小值點x1大于極大值點x2,則實數(shù)a的取值范圍是( 。
A.$({0,\frac{1}{2}})∪({2{e^{\frac{3}{2}}},+∞})$B.$({-∞,\frac{1}{2}})∪({4{e^{\frac{3}{2}}},+∞})$C.$({-∞,2{e^{\frac{3}{2}}}})$D.$({-∞,1})∪({4{e^{\frac{3}{2}}},+∞})$

查看答案和解析>>

同步練習冊答案