在等比數(shù)列{an}中,若a1+a2+a3+a4+a5=
15
8
,a1a5=
9
8
,則
1
a1
+
1
a2
+
1
a3
+
1
a4
+
1
a5
=
 
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:直接利用等比數(shù)列的性質(zhì),化簡已知條件,然后求解所求表達式的值.
解答: 解:在等比數(shù)列{an}中,若a1+a2+a3+a4+a5=
15
8
,a1a5=
9
8
,
所以
a1(1-q5)
1-q
=
15
8
,(a1q2)2=
9
8

1
a1
+
1
a2
+
1
a3
+
1
a4
+
1
a5
=
1
a1
(1-(
1
q
)
5
)
1-
1
q
=
1
a1q4
(1-q5)
1-q
=
a1
a12q4
(1-q5)
1-q
=
15
8
9
8
=
5
3

故答案為:
5
3
點評:本題考查等比數(shù)列求和,數(shù)列的基本性質(zhì)的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
2x(x≥10)
f(x+1)(0<x<10)
,則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱,
(1)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(2)已知函數(shù)f(x)=
x2+mx+m
x
的圖象關(guān)于點(0,1)對稱,在(1)的條件下,若對實數(shù)x<0及t>0,恒有g(shù)(x)<f(t),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算
.
a
c
b
d
.
=ad-bc,若函數(shù)f(x)=
.
x-1
-x
2
x+3
.
在[-4,m]上單調(diào)遞減,則實數(shù)m的取值范圍( 。
A、[-2,+∞)
B、(-∞,-2]
C、[-4,-2]
D、(-4,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列{xn}是一個公差為2的等差數(shù)列,滿足f(x8)+f(x9)+f(x10)+f(x11)=0,則x2013的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為響應(yīng)國家擴大內(nèi)需的政策,某廠家擬在2014年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬件與年促銷費用t(t≥0)萬元滿足x=7-
k
t+1
(k為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2014年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2014年該產(chǎn)品的利潤y萬元表示為年促銷費用t萬元的函數(shù);并求年促銷費用投入多少萬元時,廠家利潤最大?
(2)若規(guī)定年促銷費用不能超過2萬元,則年產(chǎn)量為多少時,廠家利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-(6a+2)x+3在[2,+∞)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在y軸上的橢圓
x2
10
+
y2
m
=1的長軸長為8,則m等于( 。
A、4B、6C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列
1
1
1
2
,
2
1
1
3
,
2
2
3
1
,…,
1
k
,
2
k-1
,…,
k
1
,…,則這個數(shù)列第2010項的值是
 

查看答案和解析>>

同步練習(xí)冊答案