13.如圖是一個算法流程圖,則輸出的k的值是3.

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,循環(huán)可得結(jié)論.

解答 解:模擬程序的運行,可得
S=1,k=1
S=2,
不滿足條件S>10,k=2,S=6
不滿足條件S>10,k=3,S=15
滿足條件S>10,退出循環(huán),輸出k的值為3.
故答案為:3.

點評 本題給出程序框圖,要我們求出最后輸出值,著重考查了算法語句的理解和循環(huán)結(jié)構(gòu)等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合$A=\left\{{x\left|{y=lgx}\right.}\right\},B=\left\{{y|y=\sqrt{x-1}}\right\}$,則A∪B=( 。
A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={0,1},B={x|(x+2)(x-1)<0,x∈Z},則A∪B=( 。
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓C1和雙曲線C2焦點相同,且離心率互為倒數(shù),F(xiàn)1,F(xiàn)2是它們的公共焦點,P是橢圓和雙曲線在第一象限的交點,若∠F1PF2=60°,則橢圓C1的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)g(x)的導(dǎo)函數(shù)g'(x)=ex,且g(0)g'(1)=e,(其中e為自然對數(shù)的底數(shù)).若?x∈(0,+∞),使得不等式$g(x)<\frac{x-m+3}{{\sqrt{x}}}$成立,則實數(shù)m的取值范圍是( 。
A.(-∞,1)B.(-∞,3)C.(3,+∞)D.(-∞,4-e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在四棱錐P-ABCD中,E是PC的中點,底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l.
(1)求證:l∥EF;
(2)求PB與平面ABCD所成角的正弦值為$\frac{2\sqrt{21}}{21}$,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}的前n項和是Sn,且a3=1,a5=4,則S13=( 。
A.39B.91C.48D.51

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(2,0),過點Q(1,0)的直線與橢圓C相交于A,B兩點,設(shè)點P(4,3),記PA,PB的斜率分別為k1,k2
(Ⅰ)求橢圓C的方程;
(Ⅱ)探討k1+k2是否為定值?如果是,求出該定值,如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=ex-ax(e=2.71828…是自然對數(shù)的底數(shù)).
(I)若函數(shù)f(x)在區(qū)間(-e,-1)上是減函數(shù),求a的取值范圍;
(II)若函數(shù)F(x)=f(x)-(ex-2ax+2lnx+a)在區(qū)間(0,$\frac{1}{2}$)內(nèi)無零點,求a的最大值.

查看答案和解析>>

同步練習(xí)冊答案