【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
求R(A∪B);
已知C={x|a<x<a+1},且CA,求實(shí)數(shù)a的取值范圍.
【答案】解:集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}={x|x≥3},
∴A∪B={x|3≤x≤10};
∴R(A∪B)={x|x<3或x>10};
又C={x|a<x<a+1},且CA,
∴ ,
解得a的取值范圍是﹣1≤a≤9
【解析】根據(jù)題意化簡(jiǎn)集合B,求出A∪B的補(bǔ)集R(A∪B),再根據(jù)CA,列出不等式求出a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)邊長(zhǎng)為的正三角形和半圓組成的圖形,現(xiàn)把沿直線AB折起使得與圓所在平面垂直,已知點(diǎn)C是半圓的一個(gè)三等分點(diǎn)(靠左邊一點(diǎn)),點(diǎn)E是線段PB上的點(diǎn),(1)當(dāng)點(diǎn)E是PB的中點(diǎn)時(shí),在圓弧上找一點(diǎn)Q,使得平面;(2)當(dāng)二面角的正切值為時(shí),求BE的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期中央電視臺(tái)播出的《中國(guó)詩(shī)詞大會(huì)》火遍全國(guó).某選拔賽后,隨機(jī)抽取100名選手的成績(jī),按成績(jī)由低到高依次分為第1,2,3,4,5組,制成頻率分布直方圖如下圖所示:
(I)在第3、4、5組中用分層抽樣抽取5名選手,求第3、4、5組每組各抽取多少名選手;
(II)在(I)的前提下,在5名選手中隨機(jī)抽取2名選手,求第4組至少有一名選手被抽取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的關(guān)系:廠里的固定成本為2.8萬(wàn)元,每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元,每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元)(總成本=固定成本+生產(chǎn)成本).如果銷售收入R(x)= ,且該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線方程為
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若為整數(shù),當(dāng)時(shí), 恒成立,求的最大值(其中為的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,設(shè)直線與橢圓交于不同兩點(diǎn),且.若點(diǎn)滿足,則=______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園有一個(gè)直角三角形地塊,現(xiàn)計(jì)劃把它改造成一塊矩形和兩塊三角形區(qū)域.如圖,矩形區(qū)域用于娛樂(lè)城設(shè)施的建設(shè),三角形BCD區(qū)域用于種植甲種觀賞花卉,三角形CAE區(qū)域用于種植乙種觀賞花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲種花卉每平方千米造價(jià)1萬(wàn)元,乙種花卉每平方千米造價(jià)4萬(wàn)元,設(shè)OE=x千米.試建立種植花卉的總造價(jià)為y(單位:萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式;求x為何值時(shí),種植花卉的總造價(jià)最小,并求出總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體ABCD﹣A′B′C′D′中,AB′與A′C′所在直線的夾角為( )
A.30°
B.60°
C.90°
D.45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com