【題目】如圖是一個邊長為的正三角形和半圓組成的圖形,現(xiàn)把沿直線AB折起使得與圓所在平面垂直,已知點C是半圓的一個三等分點(靠左邊一點),點E是線段PB上的點,(1)當點EPB的中點時,在圓弧上找一點Q,使得平面;(2)當二面角的正切值為時,求BE的長。

【答案】(1)見解析(2)

【解析】試題分析:(1)取圓弧CB的中點Q,AB的中點O,易證OQ//AC,OE//PA,得平面EOQ平面PAC,所以平面;(2)CAB的垂線交ABG點,過G作直線AE的垂線交AEH點,連CH,則即為二面角的平面角,利用直角三角形的性質(zhì)可得結(jié)果.

試題解析:(1)取圓弧CB的中點Q,AB的中點O,易證OQ//AC,OE//PA,得平面EOQ平面PAC,所以平面;

(2)過CAB的垂線交ABG點,過G作直線AE的垂線交AEH點,連CH,則即為二面角的平面角;

因為, ,在中可得,在中,可解得.

【方法點晴】本題主要考查線面平行的判定定理、二面角的定義及求法,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出以下說法:①不共面的四點中,任意三點不共線;

②有三個不同公共點的兩個平面重合;

③沒有公共點的兩條直線是異面直線;

④分別和兩條異面直線都相交的兩條直線異面;

一條直線和兩條異面直線都相交,則它們可以確定兩個平面.

其中正確結(jié)論的序號是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|﹣x,
(1)用分段函數(shù)的形式表示該函數(shù),并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域、單調(diào)區(qū)間(不要求證明);
(3)若對任意x∈R,不等式|2x﹣1|≥a+x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為,圓與直線交于, 兩點, 點的直角坐標為

)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|(2x2﹣62x+8≤0},函數(shù)f(x)=log2x(x∈A).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)h(x)=[f(x)]2﹣log2(2x),求函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,定義橢圓上的點的“伴隨點”為.

(1)求橢圓上的點的“伴隨點”的軌跡方程;

(2)如果橢圓上的點的“伴隨點”為,對于橢圓上的任意點及它的“伴隨點”,求的取值范圍;

(3)當, 時,直線交橢圓 兩點,若點, 的“伴隨點”分別是, ,且以為直徑的圓經(jīng)過坐標原點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點.

(I)證明:直線MN//平面CAB1;

(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
R(A∪B);
已知C={x|a<x<a+1},且CA,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案