分析 當y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-a),x2-x1≥e,一方面0<1+ln(x2-m)≤${e}^{{x}_{2}-e}$,x2>a+$\frac{1}{e}$.利用lnx≤x-1(x≥1),考慮x2-m≥1時.可得1+ln(x2-m)≤x2-m,令x2-m≤${e}^{{x}_{2}-e}$,可得m≥x-ex-e,利用導數求其最大值即可得出.
解答 解:當y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-a),x2-x1≥e,
∴0<1+ln(x2-a)≤${e}^{{x}_{2}-e}$,∴x2>a+$\frac{1}{e}$
∵lnx≤x-1(x≥1),考慮x2-a≥1時.
∴1+ln(x2-a)≤x2-a,
令x2-a≤${e}^{{x}_{2}-e}$,
化為a≥x-ex-e,x>a+$\frac{1}{e}$.
令f(x)=x-ex-e,則f′(x)=1-ex-e,可得x=e時,f(x)取得最大值.
∴a≥e-1.
∴a的最小值為e-1.
故答案為e-1.
點評 本題考查了利用導數研究函數的單調性極值與最值、不等式的解法、方程的解法、等價轉化方法,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3+\sqrt{3}+2\sqrt{2}}{2}$ | B. | $\frac{1+\sqrt{3}+\sqrt{2}}{2}$ | C. | $\frac{1+\sqrt{3}+2\sqrt{2}}{2}$ | D. | $\frac{3}{2}$+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{10}{11}$ | C. | $\frac{5}{6}$ | D. | $\frac{10}{21}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
貸款期限 | 6個月 | 12個月 | 18個月 | 24個月 | 36個月 |
頻數 | 20 | 40 | 20 | 10 | 10 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com