2.三角形的面積為S=$\frac{1}{2}$(a+b+c)•r,(a,b,c為三角形的邊長,r為三角形的內(nèi)切圓的半徑)利用類比推理,可以得出四面體的體積為( 。
A.V=$\frac{1}{3}$abc(a,b,c,為底面邊長)
B.V=$\frac{1}{3}$Sh(S為底面面積,h為四面體的高)
C.V=$\frac{1}{3}$(S1+S2+S3+S4)r(S1,S2,S3,S4分別為四面體四個面的面積,r為四面    體內(nèi)切球的半徑)
D.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c為底面邊長,h為四面體的高)

分析 根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點連起來,可得四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故選C.

點評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過點M(2,-2p)作拋物線x2=2py(p>0)的兩條切線,切點分別為A,B,若線段AB中點的縱坐標(biāo)為6,則拋物線的方程為( 。
A.x2=2yB.x2=4yC.x2=2y或x2=4yD.x2=3y或x2=2y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若曲線y=x2+ax+b在點(0,b)處的切線方程是3x-y+1=0,則(  )
A.a=-3,b=1B.a=3,b=1C.a=-3,b=-1D.a=3,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=Asin(ωx+φ)(ω>0,0<φ<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)$x∈[{-\frac{π}{2},\frac{π}{12}}]$時,求函數(shù)$y=f({x+\frac{π}{12}})-\sqrt{2}f({x+\frac{π}{3}})$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a為非零復(fù)數(shù),則下列四個命題都成立:
①若ab2>1,則$a>\frac{1}{b^2}$;
②a2-b2=(a+b)(a-b);
③$a+\frac{1}{a}≠0$;
④若|a|=|b|,則a=±b.
則對于任意非零復(fù)數(shù)a,b,上述命題仍成立的序號是( 。
A.B.①②C.③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某班級有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機編號1-50號,并分組,第一組1-5號,第二組6-10號,…,第十組45-50號,若在第三組中抽得號碼為12的學(xué)生,則在第八組中抽得號碼為37的學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.來自英、法、日、德的甲、乙、丙、丁四位客人,剛好碰在一起,他們除懂本國語言外,每天還會說其他三國語言的一種,有一種語言是三人都會說的,但沒有一種語言人人都懂,現(xiàn)知道:
①甲是日本人,丁不會說日語,但他倆都能自由交談;
②四人中沒有一個人既能用日語交談,又能用法語交談;
③甲、乙、丙、丁交談時,找不到共同語言溝通;
④乙不會說英語,當(dāng)甲與丙交談時,他都能做翻譯.針對他們懂的語言
正確的推理是( 。
A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英
C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.x>0,y>0,x+y-xy+1=0,求x+2y的取小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=tanωx(ω>0)的圖象上的相鄰兩支曲線截直線y=1所得的線段長為$\frac{π}{3}$.則ω的值是3.

查看答案和解析>>

同步練習(xí)冊答案