17.已知點(diǎn)M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,且點(diǎn)M到兩焦點(diǎn)距離之和為4$\sqrt{3}$.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A,B兩點(diǎn),以AB為底作等腰三角形,頂點(diǎn)為P(-3,2),求△PAB的面積.

分析 (1)由2a=4$\sqrt{3}$,可得a=2$\sqrt{3}$.又點(diǎn)M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在橢圓G上,可得$\frac{2}{3}+\frac{4}{3^{2}}$=1,解得b2,即可得出.
(2)設(shè)直線l的方程為y=x+m,與橢圓方程聯(lián)立得4x2+6mx+3m2-12=0.設(shè)A(x1,y1),B(x2,y2)(x1<x2),AB的中點(diǎn)為E(x0,y0),利用中檔坐標(biāo)公式可得E坐標(biāo).因?yàn)锳B是等腰△PAB的底邊,所以PE⊥AB.解得m.利用兩點(diǎn)之間的距離公式可得|AB|.點(diǎn)P(-3,2)到直線AB:x-y+2=0的距離d,可得△PAB的面積S=$\frac{1}{2}$|AB|•d.

解答 解:(1)∵2a=4$\sqrt{3}$,∴a=2$\sqrt{3}$.
又點(diǎn)M(2$\sqrt{2}$,$\frac{2\sqrt{3}}{3}$)在橢圓G上,∴$\frac{2}{3}+\frac{4}{3^{2}}$=1,解得b2=4,…(4分)
∴橢圓G的方程為:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1.…(5分)
(2)設(shè)直線l的方程為y=x+m,由$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得4x2+6mx+3m2-12=0.①
設(shè)A(x1,y1),B(x2,y2)(x1<x2),AB的中點(diǎn)為E(x0,y0),
則x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{3m}{4}$,y0=x0+m=$\frac{m}{4}$.
因?yàn)锳B是等腰△PAB的底邊,所以PE⊥AB.
所以PE的斜率k=$\frac{2-\frac{m}{4}}{-3+\frac{3m}{4}}$=-1,解得m=2.…(10分)
此時(shí)方程①為4x2+12x=0,解得x1=-3,x2=0,
所以y1=-1,y2=2.
所以|AB|=3$\sqrt{2}$.
此時(shí),點(diǎn)P(-3,2)到直線AB:x-y+2=0的距離d=$\frac{|-3-2+2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
所以△PAB的面積S=$\frac{1}{2}$|AB|•d=$\frac{9}{2}$.…(12分)

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、等腰三角形的性質(zhì)、相互垂直的直線斜率之間的關(guān)系、點(diǎn)到直線的距離公式、兩點(diǎn)之間的距離公式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.△ABC內(nèi)一點(diǎn)O滿足$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=0$,直線AO交BC于點(diǎn)D,則( 。
A.$2\overrightarrow{DB}+3\overrightarrow{DC}=0$B.$3\overrightarrow{DB}+2\overrightarrow{DC}=0$C.$\overrightarrow{OA}-5\overrightarrow{OD}=0$D.$5\overrightarrow{OA}+\overrightarrow{OD}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+m|+|2x-1|(m∈R)
(I)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;
(II)設(shè)關(guān)于x的不等式f(x)≤|2x+1|的解集為A,且[$\frac{3}{4}$,2]⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)復(fù)數(shù)z滿足z(1+i)=2,i為虛數(shù)單位,則復(fù)數(shù)z的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)直接寫出C1的普通方程和極坐標(biāo)方程,直接寫出C2的普通方程;
(Ⅱ)點(diǎn)A在C1上,點(diǎn)B在C2上,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列命題:
①已知a,b是兩條不重合的直線,α,β是兩個(gè)相交的平面,若a,b在平面α內(nèi)的射影是兩條相交直線,a,b在平面β內(nèi)的射影是兩條平行直線,則a,b是兩條異面直線;
②用一個(gè)平面取截一個(gè)正方體,截面圖象可能是三角形、四邊形、五邊形、六邊形;
③已知矩形ABCD頂點(diǎn)都在表面積為64π的球O的球面上,且AB=6,BC=2$\sqrt{3}$,則棱錐O-ABCD的體積為24$\sqrt{3}$;
④與正方體ABCD-A1B1C1D1的三條棱AB,CC1,A1D1所在直線距離都相等的點(diǎn)有且僅有1個(gè),
其中所有正確命題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上的函數(shù)滿足f(x)+2f′(x)>0恒成立,且f(2)=$\frac{1}{e}$(e為自然對(duì)數(shù)的底數(shù)),則不等式ex•f(x)-e${\;}^{\frac{x}{2}}$>0的解集為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c-2a)$\overrightarrow{AB}•\overrightarrow{BC}$=c$\overrightarrow{BC}$•$\overrightarrow{AC}$
(1)求B的大小;
(2)已知f(x)=cosx(asinx-2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案