A. | ($\frac{3}{2}$,+∞) | B. | (-$\frac{1}{2}$,+∞) | C. | (-4,3) | D. | (-∞,-4)和(3,+∞) |
分析 由f′(x)<0求出f(x)的減區(qū)間,利用對稱性求得f(-x)的增區(qū)間,再由平移變換可得函數(shù)f(1-x)的單調(diào)遞增區(qū)間.
解答 解:由f′(x)=x2-3x-10<0,得-2<x<5,
∴函數(shù)f(x)的減區(qū)間為(-2,5),
則函數(shù)y=f(-x)的增區(qū)間為(-5,2),
而f(1-x)=f[-(x-1)]是把函數(shù)y=f(-x)向右平移1個單位得到的,
∴函數(shù)f(1-x)的單調(diào)遞增區(qū)間是(-4,3).
故選:C.
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)圖象的對稱與平移變換,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{9}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 7 | 4 | 5 | 8 | 1 | 3 | 5 | 2 | 6 |
A. | 9400 | B. | 9408 | C. | 9410 | D. | 9414 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com