18.已知(1-2x)n(n∈N+)的展開式中第三項和第八項的二項式系數(shù)相等,則展開式所有項的系數(shù)和為( 。
A.1B.-1C.0D.2

分析 根據(jù)題意求出n的值,再令x=1求出二項式展開式中所有項的系數(shù)和.

解答 解:(1-2x)n(n∈N+)的展開式中第三項和第八項的二項式系數(shù)相等,
即${C}_{n}^{2}$=${C}_{n}^{7}$,∴n=2+7=9;
∴(1-2x)9的展開式中所有項的系數(shù)和為:
(1-2×1)9=-1.
故選:B.

點評 本題考查了二項式定理的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知正四棱臺上、下底面的邊長分別為4、10,側棱長為6.
(1)求正四棱臺的表面積;
(2)求正四棱臺的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知定認在R上的可導函數(shù)f(x)的導函數(shù)f′(x),若對于任意實數(shù)x,有f′(x)<f(x),且y=f(x)-1為奇函數(shù),則不等式f(x)<ex的解集為(  )
A.(0,+∞)B.(-∞,0)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設兩個非零向量$\overrightarrow{a}$,$\overrightarrow$不共線.
(1)如$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-3($\overrightarrow{a}$-$\overrightarrow$),$\overrightarrow{CD}$=-2$\overrightarrow{a}$-13$\overrightarrow$,求證:A,B,D三點共線.
(2)試確定k的值,使k$\overrightarrow{a}$+12$\overrightarrow$和3$\overrightarrow{a}$+k$\overrightarrow$共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x+4y+4=0與圓C相切,則圓C的一般方程是x2+y2-4x=0;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在矩形ABCD中,AB=2AD=2$\sqrt{2}$,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM;
(1)求證:AD⊥BM
(2)若點E是線段DB上的一點,問點E在何位置時,二面角E-AM-D的余弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)的導函數(shù)f′(x)=x2-3x-10,則函數(shù)f(1-x)的單調(diào)遞增區(qū)間是( 。
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,則$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=( 。
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}滿足:an+1=2an+1,a1=1.
(Ⅰ)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{1}{{{{log}_2}({{a_n}+1})}}$,n∈N*,求證:b1•b2+b2•b3+…+bn•bn+1<1.

查看答案和解析>>

同步練習冊答案