17.如圖設M為線段AB中點,AE與BD交于點C,∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(Ⅰ)寫出圖中三對相似三角形,并對其中一對作出證明;
(Ⅱ)連結FG,設α=45°,AB=4$\sqrt{2}$,AF=3,求FG長.

分析 (I)根據(jù)相似三角形的判定定理可得相似三角形.對△AMF∽△BGM給出以下證明分析:利用外角定理可得∠AMD=∠B+∠BDM,∠BGM=∠DMG+∠BDM,又∠B=∠A=∠DME=α,進而證明.
(II)由(I)可得:△AMF∽△BGM,可得BG,由已知可得△ABC為等腰直角三角形,可得AC=BC=4,進而得出CF,CG,再利用勾股定理即可得出FG.

解答 解:(I)根據(jù)相似三角形的判定定理可得:△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM.
對△AMF∽△BGM給出以下證明:
∵∠AMD=∠B+∠BDM,∠BGM=∠DMG+∠BDM,又∠B=∠A=∠DME=α,
∴∠AMF=∠BGM,∴△AMF∽△BGM.
(II)由(I)可得:△AMF∽△BGM,∴$\frac{BG}{AM}=\frac{BM}{AF}$,∴$BG=\frac{8}{3}$,
∵∠α=45°=∠A=∠B,
∴△ABC為等腰直角三角形,
∵AB=$4\sqrt{2}$,∴AC=BC=4,
∴CF=AC-AF=1,
CG=4-$\frac{8}{3}=\frac{4}{3}$,
∴FG=$\sqrt{C{F}^{2}+C{G}^{2}}$=$\frac{5}{3}$.

點評 本題考查了相似三角形的判定定理與性質(zhì)定理、外角性質(zhì)定理、等腰直角三角形的性質(zhì)、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知關于x的不等式|x-a|<b(b>0)的解集是-3<x<5,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖為焦點在x軸上的橢圓,且離心率e=$\frac{\sqrt{2}}{2}$,且過點A(-2,1),有橢圓上異于點A的點P出發(fā)的光線射到點A處被直線y=1反射后交橢圓于點Q(點Q與點P不重合).
(1)求橢圓的標準方程;
(2)當反射光線AQ過點(0,-3)時,求△OAP的面積;
(3)求證:直線PQ的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,在長方體ABCD-A1B1C1D1中,AB=1,BC=$\sqrt{3}$,點M在棱CC1上,且MD1⊥MA,則當△MAD1的面積最小時,棱CC1的長為(  )
A.$\frac{3}{2}$$\sqrt{2}$B.$\frac{\sqrt{10}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是( 。
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當x>0時,f(x)≤x;
(Ⅱ)設$g(x)=ax+({a-1})•\frac{1}{x}-lnx-1$,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖1,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點,l4和l1、l2分別交于C、D兩點,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.點P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=55°
(2)試找出∠1,∠2,∠3之間的等量關系說明理由.
(3)應用(2)中的結論解答下題:
如圖2,點A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù).
(4)如果點P在直線l3上且在A、B兩點外側(cè)運動時,其他條件不變,試探究∠1、∠2、∠3之間的關系.(點P和A、B兩點不重合,直接寫出結論即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.小明在研究三棱錐的時候,發(fā)現(xiàn)下面一個真命題,在三棱錐A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如圖),設二面角B-AC-D的大小為θ,則cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一個與γ有關的代數(shù)式,請寫出符合條件的f(γ)=cosγ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集.
(2)試寫出一個含3個元素的可倒數(shù)集.

查看答案和解析>>

同步練習冊答案