17.函數(shù)$y=\frac{x}{1-cosx}$的導數(shù)是( 。
A.$\frac{1-cosx-xsinx}{1-cosx}$B.$\frac{1-cosx-xsinx}{{{{(1-cosx)}^2}}}$
C.$\frac{1-cosx+sinx}{{{{(1-cosx)}^2}}}$D.$\frac{1-cosx+xsinx}{{{{(1-cosx)}^2}}}$

分析 利用導數(shù)的運算法則求出函數(shù)的導數(shù)即可.

解答 解:y′=$\frac{x′(1-cosx)-x(1-cosx)′}{{(1-cosx)}^{2}}$=$\frac{1-cosx-xsinx}{{(1-cosx)}^{2}}$,
故選:B.

點評 熟練掌握導數(shù)的運算法則是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知命題p:方程$\frac{x^2}{k-2}-\frac{y^2}{5-k}=1$表示焦點在x軸上的雙曲線,命題q:?x∈(0,+∞),x2+1≥kx恒成立,若“p∨q”是真命題,“¬(p∧q)”也是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知扇形的周長是4cm,則扇形面積最大時候扇形的中心角弧度數(shù)是( 。
A.2B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知P:1<x<2,Q:x(x-3)<0,則P是Q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件;D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線與函數(shù)y=lnx+ln2+1的圖象相切,則雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=ax2+bx-1圖象上在點P(-1,3)處的切線與直線y=-3x平行,則函數(shù)f(x)的解析式是f(x)=-x2-5x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$|{\begin{array}{l}{x+3}&{x^2}\\ 1&4\end{array}}|<0$,則實數(shù)x的取值范圍是(-∞,-2)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若關于x的不等式(m-1)x2-mx+m-1>0的解集為空集,則實數(shù)m的取值為m≤$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給出下列命題:
①y=1是冪函數(shù);
②函數(shù)f(x)=2x-log2x的零點有且只有1個;
③$\sqrt{x-1}(x-2)≥0$的解集為[2,+∞);
④“x<1”是“x<2”的充分非必要條件;
⑤數(shù)列{an}的前n項和為Sn,且${S_n}={a^n}-1$(a∈R),則{an}為等差或等比數(shù)列;
其中真命題的序號是④.

查看答案和解析>>

同步練習冊答案