分析 (1)利用正弦定理化簡已知等式,再由余弦定理列出關(guān)系式,將得出的等式變形后代入求出cosA的值,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
(Ⅱ)由(Ⅰ)結(jié)合基本不等式可得bc≤2+$\sqrt{3}$,再根據(jù)面積公式即可求出答案.
解答 解:(Ⅰ)利用正弦定理化簡csinC-asinA=($\sqrt{3}$c-b)sinB.
得:c2+b2-$\sqrt{3}$bc=a2,
即c2+b2-a2=$\sqrt{3}$bc,
∴由余弦定理可得:cosA=$\frac{{c}^{2}+^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$
∵A為三角形內(nèi)角,
∴A=30°.
(Ⅱ)由(1)可得c2+b2-1=$\sqrt{3}$bc,
∴2bc-1≤$\sqrt{3}$bc,當(dāng)且僅當(dāng)b=c時取等號,
∴bc≤$\frac{1}{2-\sqrt{3}}$=2+$\sqrt{3}$
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{4}$bc≤$\frac{2+\sqrt{3}}{4}$
∴三角形ABC面積S的最大值$\frac{2+\sqrt{3}}{4}$.
點(diǎn)評 此題考查了余弦定理,正弦定理,三角形面積公式的應(yīng)用,基本不等式,考查了三角函數(shù)中的恒等變換應(yīng)用,熟練掌握定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7 | B. | -3 | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
乘車次數(shù)分組 | 頻數(shù) |
[0,5) | 15 |
[5,10) | 20 |
[10,15) | 25 |
[15,20) | 24 |
[20,25) | 11 |
[25,30] | 5 |
老乘客 | 新乘客 | 合計(jì) | |
50歲以上 | 10 | 25 | 35 |
50歲以下 | 30 | 35 | 65 |
合計(jì) | 40 | 60 | 100 |
P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B=A | B. | A∩B=A | C. | A=B | D. | (∁RA)∩B=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4,5} | B. | {2,3} | C. | {1} | D. | {4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com