分析 (Ⅰ)連接OC,AC,證明:O,A,D,C四點共圓,且OD為直徑,可得OD⊥AC,即可證明BC∥OD;
(Ⅱ)如果EB=2,OB=1,由切割線定理可得EC,利用BC∥OD,即可求AD的長.
解答 (Ⅰ)證明:連接OC,AC,則
∵CD⊥OC,BC⊥AC,
∴O,A,D,C四點共圓,且OD為直徑,
∴OD⊥AC,
∴BC∥OD;
(Ⅱ)解:∵EB=2,OB=1,
∴由切割線定理可得EC2=EB•EA=2×(2+2)=8
∵BC∥OD,
∴$\frac{EB}{BO}=\frac{EC}{CD}$=2,
∴AD=CD=$\sqrt{2}$.
點評 本題考查四點共圓,考查切割線定理,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1 | B. | 0.2 | C. | 0.4 | D. | 0.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com