1.已知集合A={x|x2≤4x},B={x|x<1},則A∩B等于(  )
A.(-∞,1)B.[0,1)C.[0,4]D.[-4,+∞)

分析 先分別求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|x2≤4x}={x|0≤x≤4},B={x|x<1},
∴A∩B={x|0≤x<1}=[0,1).
故選:B.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線L交C于另一點(diǎn)B,交x軸的正半軸于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形.
(1)求C的方程
(2)若直線L1平行L,且L1和C有且只有一個(gè)公共點(diǎn)E,證明直線AE恒過(guò)定點(diǎn)?求△ABE的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列命題的說(shuō)法錯(cuò)誤的是(  )
A.對(duì)于命題p:?x∈R,x2+x+1>0,則¬p:?x∈R,x2+x+1≤0
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要條件
D.命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)?shù)列{an}滿足:${a_1}=\frac{1}{3}$,且$\frac{n}{a_n}=\frac{{2{a_{n-1}}+n-1}}{{{a_{n-1}}}}(n∈{N^*},n≥2)$,則數(shù)列{an}的通項(xiàng)公式是an=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若雙曲線C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線C上一點(diǎn),滿足$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=0的點(diǎn)P依次記為P1、P2、P3、P4,則四邊形P1P2P3P4的面積為(  )
A.$\frac{8\sqrt{5}}{5}$B.2$\sqrt{5}$C.$\frac{8\sqrt{6}}{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)α,β是兩個(gè)平面,l,m是兩條直線,下列各條件,可以判斷α∥β的有( 。
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互為異面直線.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,P是平行四邊形ABCD所在平面外一點(diǎn),E是PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)若M是CD上異于C、D的點(diǎn).連結(jié)PM交CE于G,連結(jié)BM交AC于H,求證:GH∥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某校高三年級(jí)的一次測(cè)驗(yàn)成績(jī)的頻率分布直方圖如圖所示,現(xiàn)要按如圖所示的4個(gè)分?jǐn)?shù)段進(jìn)行分層抽樣,抽取100人了解情況,已知70~80分?jǐn)?shù)段抽取了30人,則全體高三年級(jí)學(xué)生的平均分?jǐn)?shù)為82(以各組區(qū)間的中點(diǎn)值代表改組的取值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.計(jì)算${∫}_{1}^{e}$(x-$\frac{1}{x}$)dx=( 。
A.$\frac{1}{2}$e2B.$\frac{{e}^{2}+1}{2}$C.$\frac{{e}^{2}-1}{2}$D.$\frac{{e}^{2}-3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案