1.對(duì)任意的x>0,總有f(x)=a-x-|lgx|≤0,則a的取值范圍是( 。
A.(-∞,lge-lg(lge)]B.(-∞,1]C.[1,lge-lg(lge)]D.[lge-lg(lge),+∞)

分析 將所求變形為a-x≤|lgx|恒成立,結(jié)合圖象得到滿足條件的a.

解答 解:對(duì)任意的x>0,總有f(x)=a-x-|lgx|≤0,即a-x≤|lgx|恒成立,設(shè)y=-x+a,g(x)=|lgx|,如圖當(dāng)直線y=-x+a與g(x)相切時(shí)是a的最大值時(shí),設(shè)切點(diǎn)為A(x,y),
則-1=(-lgx)',得到x=lge,所以y=-lg(lge),
所以切線方程為:y+lg(lge)=-(x-lge),令x=0得到y(tǒng)=lge-lg(lge),
所以a的取值范圍為:(-∞,lge-lg(lge));
故選A.

點(diǎn)評(píng) 本題考查了不等式恒成立問(wèn)題;關(guān)鍵是分解為兩個(gè)函數(shù)圖象的位置關(guān)系問(wèn)題,借助于數(shù)形結(jié)合求得;屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,將直角△ABC沿著平行BC邊的直線DE折起,使得平面A′DE⊥平面BCDE,其中D、E分別在AC、AB邊上,且AC⊥BC,BC=3,AB=5,點(diǎn)A′為點(diǎn)A折后對(duì)應(yīng)的點(diǎn),當(dāng)四棱錐A′-BCDE的體積取得最大值時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}滿足:an+1>2an-an-1(n>1.n∈N*),給出下述命題:
①若數(shù)列{an}滿足:a2>a1,則an>an-1(n>1,n∈N*)成立;
②存在常數(shù)c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),則ap+aq>am+an
④存在常數(shù)d,使得an>a1+(n-1)d(n∈N*)都成立
上述命題正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.小明參與某商場(chǎng)家電會(huì)場(chǎng)舉行的一次智力問(wèn)答,其中問(wèn)題隨機(jī)抽取,若小明回答問(wèn)題正碘的概率為$\frac{3}{4}$,且正確加10分;回答問(wèn)題錯(cuò)誤的概率為$\frac{1}{4}$,且錯(cuò)誤扣10分;記小明回答完第n個(gè)問(wèn)題的總得分為Sn
(1)求S3=10的概率;
(2)記ξ=|S4|,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,已知BC=1,B=$\frac{π}{3}$,△ABC的面積為$\sqrt{3}$,則AC的長(zhǎng)為(  )
A.3B.$\sqrt{13}$C.$\sqrt{21}$D.$\sqrt{57}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某路口人行橫道的信號(hào)燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為80秒.若一名行人來(lái)到該路口遇到紅燈,則至少需要等待30秒才出現(xiàn)綠燈的概率為( 。
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一點(diǎn).
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)如圖(1),若$\overrightarrow{PE}$=$\frac{1}{3}$$\overrightarrow{PB}$,求證:PD∥平面EAC;
(Ⅲ)如圖(2),若E是PB的中點(diǎn),PC=2,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知P是△ABC內(nèi)一點(diǎn),且滿足2$\overrightarrow{PA}$+3$\overrightarrow{PB}$+4$\overrightarrow{PC}$=$\overrightarrow{0}$,那么S△PBC:SPCA:S△PAB等于( 。
A.4:3:2B.2:3:4C.$\frac{1}{4}$:$\frac{1}{3}$:$\frac{1}{2}$D.$\frac{1}{2}$:$\frac{1}{3}$:$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫(xiě)下面2×2列聯(lián)表;
甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀12420
成績(jī)不優(yōu)秀384680
總計(jì)5050100
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

同步練習(xí)冊(cè)答案