4.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,
①如果α∥β,m?α,那么m∥β;
②如果m∥β,m?α,α∩β=n,那么m∥n;
③如果m⊥α,β⊥α,那么m∥β;
④如果m⊥n,m⊥α,n∥β,那么α⊥β;
其中正確的命題是(  )
A.①②B.①③C.①④D.③④

分析 對4個命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①如果α∥β,m?α,那么m∥β,故正確;
②如果m∥β,m?α,α∩β=n,那么m∥n,故正確;
③如果m⊥α,β⊥α,那么m∥β,或m?β,故錯誤;
④如果m⊥n,m⊥α,n∥β,那么α,β關(guān)系不能確定,故錯誤;
故選:A.

點(diǎn)評 本題考查空間的線面位置關(guān)系,考查空間想象能力和邏輯推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計(jì)算sin$\frac{π}{6}$+tan$\frac{π}{3}$的值為( 。
A.$\frac{3\sqrt{3}}{2}$B.$\frac{5\sqrt{3}}{6}$C.$\frac{1}{2}$+$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△ABC中,若c2-a2=b2-ab,則內(nèi)角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}中,滿足a1+a2+…+an=3n-1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{3}{4}(1-\frac{1}{{3}^{n}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)n為正整數(shù),f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,計(jì)算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,觀察上述結(jié)果,按照上面規(guī)律,可以推測f(1024)>6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列結(jié)論:
(1)函數(shù)f(x)=tanx有無數(shù)個零點(diǎn);
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}則A∩B={(0,1),(1,3)};
(3)函數(shù)$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函數(shù)$f(x)=2sin(2x+\frac{π}{3})$的圖象的一個對稱中心為$(\frac{π}{3},0)$;
(5)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對任意的實(shí)數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中結(jié)論正確的序號是(1)(4)(把你認(rèn)為結(jié)論正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知P是函數(shù)y=x2圖象上的一點(diǎn),A(1,-1),則$\overrightarrow{OP}•\overrightarrow{OA}$的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三棱錐S-ABC的頂點(diǎn)都在同一球面上,且SA=AC=SB=BC=2$\sqrt{2}$,SC=4,則該球的體積為$\frac{32}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線方程為x2=2py,且過點(diǎn)(1,4),則拋物線的焦點(diǎn)坐標(biāo)為( 。
A.(1,0)B.($\frac{1}{16}$,0)C.(0,$\frac{1}{16}$)D.(0,1)

查看答案和解析>>

同步練習(xí)冊答案