分析 (1)求出函數(shù)的導(dǎo)數(shù),求出切線方程,得到關(guān)于a的方程,解出即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)∵f'(x)=3ax2-1,∴f'(1)=3a-1,
又f(1)=a,∴切線方程為y-a=(3a-1)(x-1),
∵切線過點(2,3),
∴3-a=3a-1,
解得a=1;
(2)由f(x)=3x2-1=0,
解得:${x_1}=-\frac{{\sqrt{3}}}{3},{x_2}=\frac{{\sqrt{3}}}{3}$,
x,f′(x),f(x)的變化如下:
x | $({-∞,-\frac{{\sqrt{3}}}{3}})$ | $-\frac{{\sqrt{3}}}{3}$ | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | $\frac{{\sqrt{3}}}{3}$ | $({\frac{{\sqrt{3}}}{3},+∞})$ |
f'(x) | + | 0 | - | 0 | + |
f(x) | 增 | 極大值 | 減 | 極小值 | 增 |
點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $cos(2x-\frac{π}{6})$ | B. | $sin(2x-\frac{π}{6})$ | C. | $cos(2x-\frac{π}{3})$ | D. | $sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | (2,3] | C. | [-1,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com