6.m,n表示兩條不同直線,α,β,γ表示平面,下列說法正確的個數(shù)是( 。
①若α∩β=m,α∩γ=n,且m∥n,則β∥γ;
②若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,則α∥β;
③若α∩β=l,m∥α,m∥β,n∥α,n∥β,則m∥n;
④若m∥α,n∥α,則m∥n.
A.0個B.1個C.2個D.3個

分析 ①例如三棱柱即可判斷①;
②運用面面垂直的判定和性質(zhì)定理,即可判斷②;
③運用線面平行的性質(zhì)定理,即可判斷m,n的位置關(guān)系;
④運用線面平行定理,即可判斷④.

解答 解:由題意,m,n是兩條不同的直線,α,β,γ是三個不同的平面
對于①,例如三棱柱,則不能得到β∥γ,故不正確,
對于②,m,n相交且都在α,β外,由m∥α,n∥α,得到m,n所在的平面∥α,由m∥β,n∥β,則得到m,n所在的平面∥β,
∴α∥β;故正確.
對于③由α∩β=l,m∥α,m∥β,則m∥l,由n∥α,n∥β,則n∥l,則m∥n,故正確,
對于④m∥α,n∥α,則m∥n或m與n相交或異面,故不正確
故選C.

點評 本題主要考查空間直線與平面的位置關(guān)系,考查線面平行和性質(zhì)定理,考查面面平行和性質(zhì)定理的運用,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)為單調(diào)函數(shù),且對任意x∈R,恒有f(f(x)-2x)=-$\frac{1}{2}$,若f(x0)=0,則x0的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.三棱錐P-ABC的四個頂點都在球O的球面上,已知PA、PB、PC兩兩垂直,PA=1,PB+PC=4,當三棱錐的體積最大時,球心O到平面ABC的距離是( 。
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上單調(diào)遞增,則ω的最大值為2.且當ω取最大值時f(x)的值域為[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)$f(x)=\left\{\begin{array}{l}{log_2}x\;,\;\;x>0\\{2^3}\;,\;\;x≤0\end{array}\right.$,則$f({f({\frac{1}{2}})})$的值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某校校慶期間,大會秘書團計劃從包括甲、乙兩人在內(nèi)的七名老師中隨機選擇4名參加志愿者服務(wù)工作,根據(jù)工作特點要求甲、乙兩人中至少有1人參加,則甲、乙都被選中且列隊服務(wù)時不相鄰的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)k為常數(shù),且$cos(\frac{π}{4}-α)=k$,則用k表示sin2α的式子為sin2α=2k2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知三個數(shù)1,a,9成等比數(shù)列,則圓錐曲線$\frac{x^2}{a}+\frac{y^2}{2}=1$的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

同步練習冊答案