A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
分析 求出橢圓的焦點坐標,根據(jù)點斜率式設直線方程,與橢圓方程消去y,利用根與系數(shù)的關系,根據(jù)弦長公式即可算出弦長.
解答 解:橢圓$\frac{{x}^{2}}{4}$+y2=1,a=2,b=1,c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{3}$,則橢圓的右焦點($\sqrt{3}$,0),
直線傾斜角為45°,斜率為1,設直線方程為y=x+m,橢圓兩交點分別為A(x1,y1),B(x2,y2),
代入橢圓右焦點($\sqrt{3}$,0),解得:m=-$\sqrt{3}$,則直線方程為y=x-$\sqrt{3}$,
則$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=x-\sqrt{3}}\end{array}\right.$,整理得:$\frac{5}{4}$x2-2$\sqrt{3}$x+2=0,
由韋達定理可知:x1+x2=$\frac{8\sqrt{3}}{5}$,x1x2=$\frac{8}{5}$,
由弦長公式可知l被橢圓所截的弦長為丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}$•$\sqrt{(\frac{8\sqrt{3}}{5})^{2}-4×\frac{8}{5}}$=$\frac{8}{5}$,
∴丨AB丨=$\frac{8}{5}$,
故選D.
點評 本題考查橢圓的標準方程及簡單幾何性質,直線與橢圓的位置關系,考查韋達定理及弦長公式的應用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b,c>b,則a>c | B. | 若a>-b,則c-a>c+b | ||
C. | 若ac2>bc2,則a>b | D. | 若a>b,c>d,則ac>bd |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ | B. | $\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$ | ||
C. | $\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | -8 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com