16.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為$\frac{{\sqrt{6}}}{3π}$.

分析 設(shè)球半徑為R,正方體邊長(zhǎng)為a,求出當(dāng)正方體體積最大時(shí)對(duì)應(yīng)的球半徑,由此能求出結(jié)果.

解答 解:設(shè)球半徑為R,正方體邊長(zhǎng)為a,
由題意得當(dāng)正方體體積最大時(shí):
${a^2}+{(\frac{{\sqrt{2}a}}{2})^2}={R^2}$,∴$R=\frac{{\sqrt{6}a}}{2}$,
∴所得工件體積與原料體積之比的最大值為:
$\frac{a^3}{{\frac{1}{2}×\frac{{4π{R^3}}}{3}}}=\frac{a^3}{{\frac{1}{2}×\frac{4π}{3}×{{(\frac{{\sqrt{6}a}}{2})}^3}}}=\frac{{\sqrt{6}}}{3π}$.
故答案為:$\frac{{\sqrt{6}}}{3π}$.

點(diǎn)評(píng) 本題考查工件體積與原料體積之比的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=|2x-1|-m有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)$y=\frac{x-3}{x-2}$的圖象向左平移1個(gè)單位,再向下平移1個(gè)單位得到函數(shù)f(x),則函數(shù)f(x)的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象的所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.美團(tuán)外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資y(單位:元)與送餐單數(shù)n的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問題:
①記百度外賣的“騎手”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在直角坐標(biāo)系xOy中,拋物線C:y2=4x,Q(-1,0),設(shè)點(diǎn)P是第一象限內(nèi)拋物線C上一點(diǎn),且PQ為拋物線C的切線.
(1)求點(diǎn)P的坐標(biāo);
(2)圓C1、C2均與直線OP相切于點(diǎn)P,且均與x軸相切,求圓C1、C2的半徑之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=0,將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn).
(1)求證:OM∥平面ABD;
(2)求證:平面ABC⊥平面MDO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為直線l,點(diǎn)A、B在直線l上,點(diǎn)M為拋物線E第一象限上的點(diǎn),△ABM是邊長(zhǎng)為$\frac{8}{3}$$\sqrt{3}$的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過點(diǎn)F交拋物線E于C、D兩點(diǎn),Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點(diǎn),設(shè)直線CD、GH的斜率分別為k1、k2,求$\frac{{k}_{1}}{{k}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z=$\frac{i}{1+i}$-$\frac{1}{2i}$(i是虛數(shù)單位).那么復(fù)數(shù)z的虛部為( 。
A.$\frac{1}{2}$B.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,過A與AF2垂直的直線交x軸負(fù)半軸于Q點(diǎn),且F1恰好是線段QF2的中點(diǎn).
(1)若過A、Q、F2三點(diǎn)的圓恰好與直線3x-4y-7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點(diǎn),過點(diǎn)R($\frac{3}{2}$,0)作與x軸不重合的直線l交橢圓C于E、F兩點(diǎn),直線BE、BF分別交直線x=$\frac{8}{3}$于M、N兩點(diǎn),若直線MR、NR的斜率分別為k1,k2,試問:k1k2是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案