分析 設(shè)球半徑為R,正方體邊長(zhǎng)為a,求出當(dāng)正方體體積最大時(shí)對(duì)應(yīng)的球半徑,由此能求出結(jié)果.
解答 解:設(shè)球半徑為R,正方體邊長(zhǎng)為a,
由題意得當(dāng)正方體體積最大時(shí):
${a^2}+{(\frac{{\sqrt{2}a}}{2})^2}={R^2}$,∴$R=\frac{{\sqrt{6}a}}{2}$,
∴所得工件體積與原料體積之比的最大值為:
$\frac{a^3}{{\frac{1}{2}×\frac{{4π{R^3}}}{3}}}=\frac{a^3}{{\frac{1}{2}×\frac{4π}{3}×{{(\frac{{\sqrt{6}a}}{2})}^3}}}=\frac{{\sqrt{6}}}{3π}$.
故答案為:$\frac{{\sqrt{6}}}{3π}$.
點(diǎn)評(píng) 本題考查工件體積與原料體積之比的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com