【題目】已知函數(shù).

1)若,求函數(shù)處的切線方程;

2)討論極值點(diǎn)的個(gè)數(shù);

3)若的一個(gè)極小值點(diǎn),且,證明:.

【答案】12)當(dāng)時(shí),無(wú)極值點(diǎn);當(dāng)時(shí),有一個(gè)極值點(diǎn)(3)證明見(jiàn)解析

【解析】

1)求導(dǎo)得到,,得到切線方程.

2)求導(dǎo)得到,討論兩種情況, 時(shí)必存在,使,計(jì)算單調(diào)區(qū)間得到極值點(diǎn)個(gè)數(shù).

3,即,代入得到,設(shè),確定函數(shù)單調(diào)遞減得到,令,確定單調(diào)性得到答案.

1)當(dāng)時(shí),,所以,.

從而處的切線方程為,即.

2,

①當(dāng)時(shí),,上是增函數(shù),不存在極值點(diǎn);

②當(dāng)時(shí),令,,

顯然函數(shù)是增函數(shù),又因?yàn)?/span>,,

必存在,使,

,為減函數(shù),

,為增函數(shù),

所以,的極小值點(diǎn),

綜上:當(dāng)時(shí),無(wú)極值點(diǎn),當(dāng)時(shí),有一個(gè)極值點(diǎn).

3)由(2)得:,即

,

因?yàn)?/span>,所以,

,上是減函數(shù),

,由,所以.

設(shè),,

,,所以為增函數(shù),

,即,所以

所以,所以,

因?yàn)?/span>,所以,

相乘得,

所以

結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新藥在進(jìn)入臨床實(shí)驗(yàn)之前,需要先通過(guò)動(dòng)物進(jìn)行有效性和安全性的實(shí)驗(yàn).現(xiàn)對(duì)某種新藥進(jìn)行5000次動(dòng)物實(shí)驗(yàn),一次實(shí)驗(yàn)方案如下:選取3只白鼠對(duì)藥效進(jìn)行檢驗(yàn),當(dāng)3只白鼠中有2只或2只以上使用效果明顯,即確定實(shí)驗(yàn)成功;若有且只有1效果明顯,則再取2只白鼠進(jìn)行二次檢驗(yàn),當(dāng)2只白鼠均使用效果明顯,即確定實(shí)驗(yàn)成功,其余情況則確定實(shí)驗(yàn)失敗.設(shè)對(duì)每只白鼠的實(shí)驗(yàn)相互獨(dú)立,且使用效果明顯的概率均為

)若,設(shè)該新藥在一次實(shí)驗(yàn)方案中實(shí)驗(yàn)成功的概率為,求的值;

)若動(dòng)物實(shí)驗(yàn)預(yù)算經(jīng)費(fèi)700萬(wàn)元,對(duì)每只白鼠進(jìn)行實(shí)驗(yàn)需要300元,其他費(fèi)用總計(jì)為100萬(wàn)元,問(wèn)該動(dòng)物實(shí)驗(yàn)總費(fèi)用是否會(huì)超出預(yù)算,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左,右焦點(diǎn)分別為,點(diǎn)又恰為拋物線的焦點(diǎn),以為直徑的圓與橢圓僅有兩個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線相交于,兩點(diǎn),記點(diǎn),到直線的距離分別為,,.直線相交于兩點(diǎn),記,的面積分別為

(ⅰ)證明:的周長(zhǎng)為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)C的普通方程和的直角坐標(biāo)方程;

(2)C上的點(diǎn)到距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論上的單調(diào)性;

2)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接中國(guó)共產(chǎn)黨的十九大的到來(lái),某校舉辦了“祖國(guó),你好”的詩(shī)歌朗誦比賽.該校高三年級(jí)準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當(dāng)這3名同學(xué)都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )

A. 720 B. 768 C. 810 D. 816

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,上、下頂點(diǎn)分別為,,直線的傾斜角為,橢圓上的點(diǎn)到焦點(diǎn)的最大距離為3

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),且兩點(diǎn)均在軸的左側(cè),記的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,平行四邊形中,,,,中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案