6.已知l1⊥l2,直線l1的傾斜角為60°,則直線l2的傾斜角為( 。
A.60°B.120°C.30°D.150°

分析 利用互相垂直的直線的斜率之積(斜率均存在)為-1即可求得答案.

解答 解:∵直線l1的傾斜角為60°,
∴直線l1的斜率k1=tan60°=$\sqrt{3}$,
又l2⊥l1,設(shè)直線l2的斜率為k2,
則k1•k2=-1,
∴k2=-$\frac{\sqrt{3}}{3}$,
故直線l2的傾斜角為150°,
故選:D.

點(diǎn)評 本題考查直線的傾斜角與斜率,考查互相垂直的直線的斜率之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b都是不等于1的正數(shù),則“${log_a}^2<{log_b}^2$”是“2a>2b>2”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=$\frac{1}{x}$B.y=|x|-1C.y=lg xD.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一件工作可以用2種方法完成,有3人會用第1種方法完成,另外5人會用第2種方法完成,從中選出1人來完成這件工作,不同選法的種數(shù)是( 。
A.8B.15C.16D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ex-kx2在區(qū)間(0,+∞)上單調(diào)遞增,則k的取值范圍是(-∞,$\frac{e}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊與單位圓交于點(diǎn)$P(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,則cosα的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出如下五個(gè)結(jié)論:
①y=sinx在第一象限內(nèi)是增函數(shù);     
②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);     
④y=cosx+sin($\frac{π}{2}$-x)既有最大值和最小值,又是偶函數(shù);
⑤y=sin|2x+$\frac{π}{6}$|的最小正周期為π.
其中正確結(jié)論的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x>-1},B={x|x2+2x-3<0}則A∩B=( 。
A.(-1,3)B.(-1,1)C.(-1,+∞)D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知甲、乙兩個(gè)容器,甲容器容量為x,裝滿純酒精,乙容器容量為z,其中裝有體積為y的水(x,y<z,單位:L).現(xiàn)將甲容器中的液體倒入乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒入甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過程中溶液體積變化忽略不計(jì).設(shè)經(jīng)過n(n∈N*)次操作之后,乙容器中含有純酒精an(單位:L),下列關(guān)于數(shù),列{an}的說法正確的是( 。
A.當(dāng)x=y=a時(shí),數(shù)列{an}有最大值$\frac{a}{2}$
B.設(shè)bn=an+1-an(n∈N*),則數(shù)列{bn}為遞減數(shù)列
C.對任意的n∈N*,始終有${a_n}≤\frac{xy}{z}$
D.對任意的n∈N*,都有${a_n}≤\frac{xy}{x+y}$

查看答案和解析>>

同步練習(xí)冊答案