分析 (1)利用三角形中位線定理,證出OM∥AB′,結(jié)合線面平行判定定理,即可證出OM∥平面AB′D;
(2)根據(jù)題中數(shù)據(jù),算出DO=$\frac{1}{2}$B′D=2,OM=$\frac{1}{2}$AB′=2,從而得到OD2+OM2=8=DM2,可得OD⊥OM.結(jié)合OD⊥AC利用線面垂直的判定定理,證出OD⊥平面AB′M,得到OD為三棱錐D-B′OM的高.算出△B′OM的面積,利用錐體體積公式算出三棱錐D-B′OM的體積,即可得到三棱錐B′-DOM的體積.
解答 解:(1)∵O為AC的中點(diǎn),M為B′C的中點(diǎn),∴OM∥AB′.
又∵OM?平面AB′D,AB′?平面AB′D,
∴OM∥平面AB′D.
(2)∵在菱形ABCD中,OD⊥AC,∴在三棱錐B′-ACD中,OD⊥AC.
在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.
∵O為BD的中點(diǎn),∴DO=$\frac{1}{2}$BD=2.
∵O為AC的中點(diǎn),M為B′C的中點(diǎn),∴OM=$\frac{1}{2}$AB′=2.
因此,OD2+OM2=8=DM2,可得OD⊥OM.
∵AC、OM是平面AB′C內(nèi)的相交直線,
∴OD⊥平面AB′M.即OD是三棱錐D-B′OM的高.
由OD=2,S△B′OM=$\frac{1}{2}$×OB′×B′M×sin60°=$\sqrt{3}$,
∴VB′-DOM=VD-B′OM=$\frac{1}{3}$S△B′OM×DO=$\frac{1}{3}$×$\sqrt{3}$×2=$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題給出平面折疊問(wèn)題,求證線面平行、面面垂直并求三棱錐的體積,著重考查了線面平行判定定理、線面垂直與面面垂直的判定和錐體的體積求法等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | π+1 | C. | π | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com