1.要得到y(tǒng)=sinx的圖象只需將$y=sin(\frac{x}{2}+\frac{π}{3})$的圖象( 。
A.先向左平移$\frac{2π}{3}$單位,再將圖象上各點(diǎn)的橫坐標(biāo)縮短至原來的$\frac{1}{2}$
B.先向右平移$\frac{2π}{3}$單位,再將圖象上各點(diǎn)的橫坐標(biāo)縮短至原來的$\frac{1}{2}$
C.先將圖象上各點(diǎn)的橫坐標(biāo)縮短至原來的$\frac{1}{2}$,再將圖象向左平移$\frac{π}{3}$單位
D.先將圖象上各點(diǎn)橫坐標(biāo)擴(kuò)大為原來的2倍,再將圖象向右平移$\frac{π}{3}$單位

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:將$y=sin(\frac{x}{2}+\frac{π}{3})$的圖象先向右平移$\frac{2π}{3}$單位,可得sin[$\frac{1}{2}$(x-$\frac{2π}{3}$)+$\frac{π}{3}$]=sin$\frac{1}{2}$x,再將圖象上各點(diǎn)的橫坐標(biāo)縮短至原來的$\frac{1}{2}$,得到sinx.
故選B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)+1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位得到函數(shù)g(x)的圖象,若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將除顏色外完全相同的一個(gè)白球、一個(gè)黃球、兩個(gè)紅球分給三個(gè)小朋友,且每個(gè)小朋友至少分得一個(gè)球的分法有21(種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,則角C等于(  )
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={x|x2-x-6<0},B={x|2x≥1},則A∩B=( 。
A.{x|1≤x<3}B.{x|0≤x<3}C.{x|1≤x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{1}{2}$.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2cosx-3sinx的導(dǎo)數(shù)為f'(x),則f'(x)=( 。
A.f'(x)=-2sinx-3cosxB.f'(x)=-2cosx+3sinx
C.f'(x)=-2sinx+3cosxD.f'(x)=2sinx-3cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=|tanx|的對(duì)稱軸是x=$\frac{π}{2}k$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.f(x)=ax3+x2+2,若f′(1)=5,則a的值等于( 。
A.1B.2C.$\frac{1}{3}$D.$\frac{10}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案