19.已知集合A={x|$lo{g}_{\frac{1}{2}}$(x-1)>1},B={x|x2-2x-3>0},則“x∈A”是“x∈B”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由$lo{g}_{\frac{1}{2}}$(x-1)>1,可得:$0<x-1<\frac{1}{2}$,解得集合A.由x2-2x-3>0,解得:x>3,或x<-1.即可判斷出結(jié)論.

解答 解:由$lo{g}_{\frac{1}{2}}$(x-1)>1,可得:$0<x-1<\frac{1}{2}$,解得$1<x<\frac{3}{2}$,即集合A=$(1,\frac{3}{2})$.
由x2-2x-3>0,解得:x>3,或x<-1.即B(-∞,-1)∪(3,+∞).
則“x∈A”是“x∈B”的既不充分也不必要條件.
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)={x^2}+\sqrt{2}(m-1)x+\frac{m}{4}$,現(xiàn)有一組數(shù)據(jù)(數(shù)據(jù)量較大),從中隨機(jī)抽取10個(gè),繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)現(xiàn)從莖葉圖的數(shù)據(jù)中任取4個(gè)數(shù)據(jù)分別替換m的值,
求至少有2個(gè)數(shù)據(jù)使得函數(shù)f(x)沒有零點(diǎn)的概率;
(Ⅱ)以頻率估計(jì)概率,若從該組數(shù)據(jù)中隨機(jī)抽取4個(gè)數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒有零點(diǎn)的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-2≥0}\\{x+y-1≤0}\\{y+1≥0}\end{array}\right.$,z=mx+y的最大值為3,則實(shí)數(shù)m的值是( 。
A.-2B.3C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n-1與a2n=a2n-1+1,則S20=2056.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,2Sn+1=Sn+Sn+2(n∈N+),若a3=3,則a100=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y-2x≤0}\\{2x+y≤6}\\{y≥\frac{1}{2}}\end{array}\right.$,則2x+$\frac{1}{y}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$sin({α-\frac{π}{3}})=\frac{{\sqrt{3}}}{3}$,則cos$({2α+\frac{π}{3}})$=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{3}{7}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=110,且a1,a2,a4成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若數(shù)列{bn}前n項(xiàng)和Tn,證明${T_n}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案