13.高二某班共有學(xué)生60人,座號(hào)分別為1,2,3,…,60現(xiàn)根據(jù)座號(hào),用系統(tǒng)抽樣的方法,抽取一個(gè)容量為5的樣本.已知4號(hào)、28號(hào)、40號(hào)、52號(hào)同學(xué)在樣本中,那么樣本中還有一個(gè)同學(xué)的座號(hào)是( 。
A.14B.16C.36D.56

分析 求出樣本間隔即可得到結(jié)論.

解答 解:∵樣本容量為5,
∴樣本分段間隔為60÷5=12,
∵4號(hào)、28號(hào)、40號(hào)、52號(hào)同學(xué)在樣本中,
∴樣本中還有一個(gè)同學(xué)的座號(hào)是16,
故選B.

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的應(yīng)用,根據(jù)條件求出樣本間隔即可,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知m∈R,命題p:對(duì)任意實(shí)數(shù)x,不等式x2-2x-1≥m2-3m恒成立,若¬p為真命題,則m的取值范圍是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校某次N名學(xué)生的學(xué)科能力測(cè)評(píng)成績(jī)(滿分120分)的頻率分布直方圖如下,已知分?jǐn)?shù)在100-110的學(xué)生數(shù)有21人(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110-115分的人數(shù)n.;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110-115的n名學(xué)生(女生占$\frac{1}{3}$)中選3位分配給A老師進(jìn)行指導(dǎo),設(shè)隨機(jī)變量ξ表示選出的3位學(xué)生中女生的人數(shù),求ξ的分布列與數(shù)學(xué)期望Eξ;
(3)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x、物理成績(jī)y進(jìn)行分析,該生7次考試成績(jī)?nèi)绫?br />
數(shù)學(xué)(x)888311792108100112
物理(y)949110896104101106
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,求出y關(guān)于x的線性回歸方程 $\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘估計(jì)分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i-}\overline{x})^{2}}$,$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線y=ax是曲線y=lnx的切線,則實(shí)數(shù)a=(  )
A.$\frac{1}{2}$B.$\frac{1}{2e}$C.$\frac{1}{e}$D.$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(1)求f(x)的定義域,值域;
(2)討論函數(shù)f(x)的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1(-1,0),F(xiàn)2(1,0)是橢圓C的兩個(gè)焦點(diǎn),過F2且垂直x軸的直線交C于A,B兩點(diǎn),且|AB|=3,則C的方程為(  )
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1D.$\frac{x^2}{5}$+$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,已知∠A=60°,AB:AC=8:5,面積為10$\sqrt{3}$,則AB=( 。
A.8B.6C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)F為拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)M(2,m)在拋物線E上,且|MF|=3.
(1)求拋物線E的方程;
(2)求以點(diǎn)N(1,1)為中點(diǎn)的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=|x|+|x-4|,則不等式f(x2+2)>f(x)的解集用區(qū)間表示為$(-∞,\;-2)∪(\sqrt{2},\;+∞)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案