17.設(shè)f(x)定義在R上的函數(shù),且對任意m,n有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1,且當x<0時,有f(x)>1
(2)判斷f(x)在R上的單調(diào)性.

分析 (1)令m=1,n=0,得出f(1)=f(1)•f(0 ),再結(jié)合當x>0時,0<f(x)<1.得出f(0)=1
(2)設(shè)x1>x2,由已知得出f(x1-x2+x2)=f(x1-x2 )•f(x2),且能得出0<f(x1-x2)<1,確定出f(x1)<f(x2)后即可判斷出函數(shù)f(x)在R上單調(diào)遞減.

解答 解:(1)證明:令m=1,n=0則f(1)=f(1)•f(0)又0<f(1)<1∴f(0)=1
取m<0,n=-m,代入恒等式得f(m)•f(-m)=f(0)=1,
又x>0時,0<f(x)<1,所以有0<f(-m)<1
由上f(m)•f(-m)=1,∴$f(m)=\frac{1}{f(-m)}>1$,即當x<0時有f(x)>1,
所以有x<0時,f(x)<1
(2)函數(shù)為減函數(shù),
理由如下:設(shè)x2>x1則x2-x1>0,∵當x>0時,0<f(x)<1.∴0<f(x2-x1)<1,
∴f(x2)=f[x1+(x2-x1)]=f(x1)•f(x2-x1)<f(x1
∴函數(shù)f(x)是R上的減函數(shù)
所以,函數(shù)f(x)在R上單調(diào)遞減.

點評 本題主要考查了抽象函數(shù)表達式反映函數(shù)性質(zhì)及抽象函數(shù)表達式的應用,函數(shù)單調(diào)性的定義及其證明,利用函數(shù)性質(zhì)和函數(shù)的單調(diào)性解不等式的方法,轉(zhuǎn)化化歸的思想方法

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,∠BAA1=∠CAA1=60°,求異面直線AB1與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合M={x|x<2},集合N={x|x2-x<0},則下列關(guān)系中正確的是(  )
A.M∪N=RB.M∪∁RN=RC.N∪∁RM=RD.M∩N=M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若一個集合中的三個元素a,b,c是△ABC的三邊長,則此三角形一定不是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$與雙曲線$\frac{x^2}{m}-\frac{y^2}{8}=1$有共同的焦點F1,F(xiàn)2,兩曲線的一個交點為P,則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga$\frac{1}{1-x}$,記F(x)=2f(x)+g(x).
(1)求函數(shù)F(x)的定義域及其零點;
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=x2-ax+b(a、b∈R),A={x∈R|f(x)-x=0},B={x∈R|f(x)-ax=0},若A={1,-3},試用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為${s_n}={n^2}-7n$
(1)求數(shù)列{an}的通項公式,并判斷{an}是不是等差數(shù)列,如果是求出公差,如果不是說明理由
(2)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)對x∈[0,15]恒成立,求實數(shù)a的取值范圍;
(3)存在x∈(-∞,0],使|af(x)-f(2x)|>1成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案