7.若關于x的不等式${4^x}-{log_a}x≤\frac{3}{2}$在$x∈(0,\frac{1}{2}]$上恒成立,則實數(shù)a的取值范圍是( 。
A.$[\frac{1}{4},1)$B.$(0,\frac{1}{4}]$C.$[\frac{3}{4},1)$D.$(0,\frac{3}{4}]$

分析 兩個函數(shù)的恒成立問題轉化為最值問題,此題4x-logax≤$\frac{3}{2}$對x∈(0,$\frac{1}{2}$)恒成立,函數(shù)$y={4^x}-\frac{3}{2}$的圖象不在y=logax圖象的上方.對數(shù)函數(shù)另一方面要注意分類對底數(shù)a討論.即可求解

解答 解:由題意得${4^x}-\frac{3}{2}≤{log_a}x$在$x∈(0,\frac{1}{2}]$上恒成立,
即當$x∈(0,\frac{1}{2}]$時,函數(shù)$y={4^x}-\frac{3}{2}$的圖象不在y=logax圖象的上方,
由圖知:當a>1時,函數(shù)$y={4^x}-\frac{3}{2}({0<x≤\frac{1}{2}})$的圖象在y=logax圖象的上方;
當0<a<1時,${log_a}\frac{1}{2}≥\frac{1}{2}$,解得$\frac{1}{4}≤a<1$.
故選:A.

點評 本題考查了函數(shù)在其定義域內值域的問題,兩個函數(shù)的恒成立問題轉化為最值問題.對數(shù)函數(shù)另一方面要注意分類對底數(shù)a討論.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當x∈(0,1)時,f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}滿足條件:a1=1,an+1=2an+1
(1)求數(shù)列an的通項公式
(2)令${c_n}=\frac{2^n}{{{a_n}•{a_{n+1}}}}$記Tn=c1+c2+c3+…+cn  求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知定義在R上的奇函數(shù)f(x)=1-$\frac{a}{{2}^{x}+1}$,若0<x≤1,都有k×f(x)≥2x-1成立,則k的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)y=f(x)是一次函數(shù),且[f(x)]2-3f(x)=4x2-10x+4,則f(x)=-2x+4或2x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求f(x)的最小正周期;
(2)求f(x)的單調區(qū)間;
(3)當x∈[0,$\frac{π}{4}$]時,求f(x)的最大值、最小值,及其取得最值時自變量的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+1)=2f(x),當x∈[0,1)時,f(x)=-x2+x,設f(x)在[n-1,n)上的最大值為${a_n}({n∈{N^*}})$,則a4=(  )
A.2B.1C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一個扇形的弧長與面積都是3,這個扇形中心角的弧度數(shù)是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設曲線x2=2y與過原點的直線相交于點M,若直線OM的傾斜角為θ,則線段OM與曲線圍成的封閉圖形的面積S(θ)的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

同步練習冊答案